dc.creator | Levesley, J | |
dc.creator | Kushpel, AK | |
dc.date | 1999 | |
dc.date | 2014-12-02T16:30:04Z | |
dc.date | 2015-11-26T17:38:43Z | |
dc.date | 2014-12-02T16:30:04Z | |
dc.date | 2015-11-26T17:38:43Z | |
dc.date.accessioned | 2018-03-29T00:20:23Z | |
dc.date.available | 2018-03-29T00:20:23Z | |
dc.identifier | Constructive Approximation. Springer Verlag, v. 15, n. 3, n. 369, n. 379, 1999. | |
dc.identifier | 0176-4276 | |
dc.identifier | WOS:000080408100004 | |
dc.identifier | 10.1007/s003659900113 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68727 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/68727 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/68727 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1286289 | |
dc.description | We extend the results of Pollard [4] and give asymptotic estimates for the norm of the Fourier-Gegenbauer projection operator in the appropriate weighted L-p space. In particular, we settle the question of whether the projection is bounded for p = (2 lambda + 1)/lambda and p = (2 lambda + 1)/(lambda + 1), where lambda is the index for the family of Gegenbauer polynomials under consideration. | |
dc.description | 15 | |
dc.description | 3 | |
dc.description | 369 | |
dc.description | 379 | |
dc.language | en | |
dc.publisher | Springer Verlag | |
dc.publisher | New York | |
dc.publisher | EUA | |
dc.relation | Constructive Approximation | |
dc.relation | Constr. Approx. | |
dc.rights | fechado | |
dc.rights | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dc.source | Web of Science | |
dc.subject | Fourier-Gegenbauer projection | |
dc.subject | Lebesgue constants | |
dc.title | On the norm of the Fourier-Gegenbauer projection in weighted L-p spaces | |
dc.type | Artículos de revistas | |