dc.creatorLevesley, J
dc.creatorKushpel, AK
dc.date1999
dc.date2014-12-02T16:30:04Z
dc.date2015-11-26T17:38:43Z
dc.date2014-12-02T16:30:04Z
dc.date2015-11-26T17:38:43Z
dc.date.accessioned2018-03-29T00:20:23Z
dc.date.available2018-03-29T00:20:23Z
dc.identifierConstructive Approximation. Springer Verlag, v. 15, n. 3, n. 369, n. 379, 1999.
dc.identifier0176-4276
dc.identifierWOS:000080408100004
dc.identifier10.1007/s003659900113
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68727
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68727
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68727
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1286289
dc.descriptionWe extend the results of Pollard [4] and give asymptotic estimates for the norm of the Fourier-Gegenbauer projection operator in the appropriate weighted L-p space. In particular, we settle the question of whether the projection is bounded for p = (2 lambda + 1)/lambda and p = (2 lambda + 1)/(lambda + 1), where lambda is the index for the family of Gegenbauer polynomials under consideration.
dc.description15
dc.description3
dc.description369
dc.description379
dc.languageen
dc.publisherSpringer Verlag
dc.publisherNew York
dc.publisherEUA
dc.relationConstructive Approximation
dc.relationConstr. Approx.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectFourier-Gegenbauer projection
dc.subjectLebesgue constants
dc.titleOn the norm of the Fourier-Gegenbauer projection in weighted L-p spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución