Artículos de revistas
Lipid chain, dynamics in stratum corneum studied by spin label electron paramagnetic resonance
Registro en:
Chemistry And Physics Of Lipids. Elsevier Sci Ireland Ltd, v. 104, n. 2, n. 101, n. 111, 2000.
0009-3084
WOS:000084839700001
10.1016/S0009-3084(99)00090-0
Autor
Alonso, A
Meirelles, NC
Tabak, M
Institución
Resumen
The lipid chain motions in stratum corneum (SC) membranes have been studied through electron paramagnetic resonance (EPR) spectroscopy of stearic acid spin-labeled at the 5th, 12th and 16th carbon atom positions of the acyl chain. Lipids have been extracted from SC with a series of chloroform/methanol mixtures, in order to compare the molecular dynamics and the thermotropic behavior in intact Se, lipid-depleted SC (containing covalently bound lipids of the corneocyte envelope) and dispersion of extracted SC lipids. The segmental motion of 5- and 12-doxylstearic acid (5- and 12-DSA) and the rotational correlation time of 16-doxylstearic acid (16-DSA) showed that the envelope lipids are more rigid and the extracted lipids are more fluid than the lipids of the intact SC over the range of temperature measured. The lower fluidity observed for the corneocyte envelope, that may be caused mainly due to lipid-protein interactions, suggests a major contribution of this lipid domain to the barrier function of SC. Changes in the activation energy for reorientational diffusion of the 16-DSA spin label showed apparent phase transitions around 54 degrees C, for the three SC samples. Some lipid reorganization may occur in SC above 54 degrees C, in agreement with results reported from studies with several other techniques. This reorganization is sensitive to the presence of the extractable intercellular lipids, being different in the lipid-depleted sample as compared to native SC and lipid dispersion. The results contribute to the understanding of alkyl chain packing and mobility in the SC membranes, which are involved in the mechanisms that control the permeability of different compounds through skin, suggesting an important involvement of the envelope in the skin barrier. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved. 104 2 101 111