dc.creatorChen, JS
dc.creatorPan, C
dc.creatorRoque, CMOL
dc.creatorWang, HP
dc.date1998
dc.dateSEP
dc.date2014-12-02T16:29:56Z
dc.date2015-11-26T17:38:21Z
dc.date2014-12-02T16:29:56Z
dc.date2015-11-26T17:38:21Z
dc.date.accessioned2018-03-29T00:19:59Z
dc.date.available2018-03-29T00:19:59Z
dc.identifierComputational Mechanics. Springer Verlag, v. 22, n. 3, n. 289, n. 307, 1998.
dc.identifier0178-7675
dc.identifierWOS:000076134800007
dc.identifier10.1007/s004660050361
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/75997
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/75997
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/75997
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1286185
dc.descriptionA Meshless approach based on a Reproducing Kernel Particle Method is developed for metal forming analysis. In this approach, the displacement shape functions are constructed using the reproducing kernel approximation that satisfies consistency conditions. The variational equation of materials with loading-path dependent behavior and contact conditions is formulated with reference to the current configuration. A Lagrangian kernel function, and its corresponding reproducing kernel shape function, are constructed using material coordinates for the Lagrangian discretization of the variational equation. The spatial derivatives of the Lagrangian reproducing kernel shape functions involved in the stress computation of path-dependent materials are performed by an inverse mapping that requires the inversion of the deformation gradient. A collocation formulation is used in the discretization of the boundary integral of the contact constraint equations formulated by a penalty method. By the use of a transformation method, the contact constraints are imposed directly on the contact nodes, and consequently the contact forces and their associated stiffness matrices are formulated at the nodal coordinate. Numerical examples are given to verify the accuracy of the proposed meshless method for metal forming analysis.
dc.description22
dc.description3
dc.description289
dc.description307
dc.languageen
dc.publisherSpringer Verlag
dc.publisherNew York
dc.publisherEUA
dc.relationComputational Mechanics
dc.relationComput. Mech.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectFinite-element Method
dc.subjectLarge-deformation Analysis
dc.subjectFree Galerkin Methods
dc.subjectHydrodynamic Lubrication
dc.subjectConstitutive Relations
dc.subjectFrictional Contact
dc.subjectStrain
dc.subjectElastoplasticity
dc.subjectSimulation
dc.subjectPlasticity
dc.titleA Lagrangian reproducing kernel particle method for metal forming analysis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución