dc.creatorLopes, MC
dc.creatorLopes, HJN
dc.creatorZheng, YX
dc.date1999
dc.dateMAR
dc.date2014-12-02T16:25:35Z
dc.date2015-11-26T17:37:12Z
dc.date2014-12-02T16:25:35Z
dc.date2015-11-26T17:37:12Z
dc.date.accessioned2018-03-29T00:18:52Z
dc.date.available2018-03-29T00:18:52Z
dc.identifierCommunications In Mathematical Physics. Springer Verlag, v. 201, n. 2, n. 291, n. 304, 1999.
dc.identifier0010-3616
dc.identifierWOS:000079415700002
dc.identifier10.1007/s002200050556
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57144
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/57144
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57144
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285899
dc.descriptionA confined eddy is a circularly symmetric flow with vorticity of compact support and zero net circulation. Confined eddies with disjoint supports can be super-imposed to generate stationary weak solutions of the two-dimensional incompressible inviscid Euler equations. In this work, we consider the unique weak solution of the two-dimensional incompressible Navier-Stokes equations having a disjoint superposition of very singular confined eddies as the initial datum. We prove the convergence of these weak solutions back to the initial configuration, as the Reynolds number goes to infinity. This implies that the stationary superposition of confined eddies with disjoint supports is the unique physically correct weak solution of the two-dimensional incompressible Euler equations.
dc.description201
dc.description2
dc.description291
dc.description304
dc.languageen
dc.publisherSpringer Verlag
dc.publisherNew York
dc.publisherEUA
dc.relationCommunications In Mathematical Physics
dc.relationCommun. Math. Phys.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subject2-d Incompressible-flow
dc.subjectInviscid Limit
dc.titleConvergence of the vanishing viscosity approximation for superpositions of confined eddies
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución