dc.creatorScheidt, HA
dc.creatorSchibur, S
dc.creatorMagalhaes, A
dc.creatorde Azevedo, ER
dc.creatorBonagamba, TJ
dc.creatorPascui, O
dc.creatorSchulz, R
dc.creatorReichert, D
dc.creatorHuster, D
dc.date2010
dc.dateJUN
dc.date2014-11-15T05:05:49Z
dc.date2015-11-26T17:35:59Z
dc.date2014-11-15T05:05:49Z
dc.date2015-11-26T17:35:59Z
dc.date.accessioned2018-03-29T00:18:27Z
dc.date.available2018-03-29T00:18:27Z
dc.identifierBiopolymers. Wiley-blackwell, v. 93, n. 6, n. 520, n. 532, 2010.
dc.identifier0006-3525
dc.identifierWOS:000277011300003
dc.identifier10.1002/bip.21386
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78153
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/78153
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78153
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285789
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionWe have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying C-13 high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T-1 relaxation times are rather similar, the T-2 relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in data:rat and artificial cartilage different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue. (C) 2010 Wiley Periodicals, Inc. Biopolymers 93: 520-532, 2010.
dc.description93
dc.description6
dc.description520
dc.description532
dc.descriptionDFG [HU 720/7-1]
dc.descriptionGerman Academic Exchange Service
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionDFG [HU 720/7-1]
dc.descriptionFAPESP [JP-05/59571-0]
dc.languageen
dc.publisherWiley-blackwell
dc.publisherMalden
dc.publisherEUA
dc.relationBiopolymers
dc.relationBiopolymers
dc.rightsfechado
dc.rightshttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.sourceWeb of Science
dc.subjectC-13 MAS NMR
dc.subjectrelaxation rates
dc.subjecttissue engineering
dc.subjectmolecular dynamics
dc.subjectNuclear-magnetic-resonance
dc.subjectAtomic-force Microscopy
dc.subjectBovine Nasal Cartilage
dc.subjectSolid-state
dc.subjectCollagen Dynamics
dc.subjectTissue
dc.subjectRelaxation
dc.subjectProteoglycan
dc.subjectPolymers
dc.subjectSamples
dc.titleThe Mobility of Chondroitin Sulfate in Articular and Artificial Cartilage Characterized by C-13 Magic-Angle Spinning NMR Spectroscopy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución