dc.creatorMunuera, C
dc.creatorTorres, F
dc.date2004
dc.dateSEP
dc.date2014-11-15T02:45:36Z
dc.date2015-11-26T17:35:49Z
dc.date2014-11-15T02:45:36Z
dc.date2015-11-26T17:35:49Z
dc.date.accessioned2018-03-29T00:18:01Z
dc.date.available2018-03-29T00:18:01Z
dc.identifierApplicable Algebra In Engineering Communication And Computing. Springer, v. 15, n. 2, n. 81, n. 100, 2004.
dc.identifier0938-1279
dc.identifierWOS:000224435700001
dc.identifier10.1007/s00200-004-0150-z
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78231
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/78231
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78231
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285682
dc.descriptionLet C be an algebraic geometric code of dimension k and length n constructed on a curve X over F-q. Let s (C) be the state complexity of C and set w(C) := min{k, n - k}, the Wolf upper bound on s(C). We introduce a numerical function R that depends on the gonality sequence of X and show that s(C) greater than or equal to w(C) - R(2g - 2), where g is the genus of X. As a matter of fact, R(2g - 2) less than or equal to g - (gamma(2) - 2) with gamma(2) being the gonality of X over F-q, and thus in particular we have that s (C) greater than or equal to (C) g + gamma(2) - 2.
dc.description15
dc.description2
dc.description81
dc.description100
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationApplicable Algebra In Engineering Communication And Computing
dc.relationAppl. Algebr. Eng. Commun. Comput.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjecterror correcting codes
dc.subjectalgebraic geometric codes
dc.subjecttrellis state complexity
dc.subjectgonality sequence of curves
dc.subjectLinear Block-codes
dc.subjectGoppa Codes
dc.subjectWeights
dc.subjectBch
dc.titleBounding the trellis state complexity of algebraic geometric codes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución