dc.creator | Mercuri, F | |
dc.creator | Podesta, F | |
dc.creator | Seixas, JAR | |
dc.creator | Tojeiro, R | |
dc.date | 2006 | |
dc.date | 2014-11-15T03:39:52Z | |
dc.date | 2015-11-26T17:35:49Z | |
dc.date | 2014-11-15T03:39:52Z | |
dc.date | 2015-11-26T17:35:49Z | |
dc.date.accessioned | 2018-03-29T00:18:01Z | |
dc.date.available | 2018-03-29T00:18:01Z | |
dc.identifier | Commentarii Mathematici Helvetici. European Mathematical Soc, v. 81, n. 2, n. 471, n. 479, 2006. | |
dc.identifier | 0010-2571 | |
dc.identifier | WOS:000237714900008 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78890 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/78890 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/78890 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1285679 | |
dc.description | We study isometric immersions f : M-n -> Rn+1 into Euclidean space of dimension n + 1 of a complete Riemannian manifold of dimension n on which a compact connected group of intrinsic isometrics acts with principal orbits of codimension one. We give a complete classification if either n >= 3 and M-n is compact or if n >= 5 and the connected components of the flat part of W are bounded. We also provide several sufficient conditions for f to be a hypersurface of revolution. | |
dc.description | 81 | |
dc.description | 2 | |
dc.description | 471 | |
dc.description | 479 | |
dc.language | en | |
dc.publisher | European Mathematical Soc | |
dc.publisher | Zurich | |
dc.publisher | Suíça | |
dc.relation | Commentarii Mathematici Helvetici | |
dc.relation | Comment. Math. Helv. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | cohomogeneity one manifolds | |
dc.subject | hypersurfaces | |
dc.subject | One Manifolds | |
dc.subject | Rigidity | |
dc.title | Cohomogeneity one hypersurfaces of Euclidean spaces | |
dc.type | Artículos de revistas | |