dc.creatorMercuri, F
dc.creatorPodesta, F
dc.creatorSeixas, JAR
dc.creatorTojeiro, R
dc.date2006
dc.date2014-11-15T03:39:52Z
dc.date2015-11-26T17:35:49Z
dc.date2014-11-15T03:39:52Z
dc.date2015-11-26T17:35:49Z
dc.date.accessioned2018-03-29T00:18:01Z
dc.date.available2018-03-29T00:18:01Z
dc.identifierCommentarii Mathematici Helvetici. European Mathematical Soc, v. 81, n. 2, n. 471, n. 479, 2006.
dc.identifier0010-2571
dc.identifierWOS:000237714900008
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78890
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/78890
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78890
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285679
dc.descriptionWe study isometric immersions f : M-n -> Rn+1 into Euclidean space of dimension n + 1 of a complete Riemannian manifold of dimension n on which a compact connected group of intrinsic isometrics acts with principal orbits of codimension one. We give a complete classification if either n >= 3 and M-n is compact or if n >= 5 and the connected components of the flat part of W are bounded. We also provide several sufficient conditions for f to be a hypersurface of revolution.
dc.description81
dc.description2
dc.description471
dc.description479
dc.languageen
dc.publisherEuropean Mathematical Soc
dc.publisherZurich
dc.publisherSuíça
dc.relationCommentarii Mathematici Helvetici
dc.relationComment. Math. Helv.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectcohomogeneity one manifolds
dc.subjecthypersurfaces
dc.subjectOne Manifolds
dc.subjectRigidity
dc.titleCohomogeneity one hypersurfaces of Euclidean spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución