dc.creator | Araujo, AIL | |
dc.creator | Corso, G | |
dc.creator | Almeida, AM | |
dc.creator | Lewinsohn, TM | |
dc.date | 2010 | |
dc.date | APR 1 | |
dc.date | 2014-11-19T19:32:59Z | |
dc.date | 2015-11-26T17:30:29Z | |
dc.date | 2014-11-19T19:32:59Z | |
dc.date | 2015-11-26T17:30:29Z | |
dc.date.accessioned | 2018-03-29T00:17:26Z | |
dc.date.available | 2018-03-29T00:17:26Z | |
dc.identifier | Physica A-statistical Mechanics And Its Applications. Elsevier Science Bv, v. 389, n. 7, n. 1405, n. 1411, 2010. | |
dc.identifier | 0378-4371 | |
dc.identifier | WOS:000274875300009 | |
dc.identifier | 10.1016/j.physa.2009.11.030 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54310 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/54310 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/54310 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1285532 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | We present all index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the Sum of distances of the Occupied elements in the incidence matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the simplest case the distance of the matrix element a(i,j) is d(i,j) = i + j, the Manhattan distance. A generic distance is obtained as d(i,j) = (i(x) + j(x))(1/x). The nestedness index is defined by nu = 1 - tau, where tau is the "temperature" of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix where the temperature is defined as one. We discuss all important feature of the problem: matrix Occupancy p. We address this question using a metric index X that adjusts for matrix Occupancy. (C) 2009 Elsevier B.V. All rights reserved. | |
dc.description | 389 | |
dc.description | 7 | |
dc.description | 1405 | |
dc.description | 1411 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | en | |
dc.publisher | Elsevier Science Bv | |
dc.publisher | Amsterdam | |
dc.publisher | Holanda | |
dc.relation | Physica A-statistical Mechanics And Its Applications | |
dc.relation | Physica A | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Patterns in networks | |
dc.subject | Bipartite networks | |
dc.subject | Metacommunity analysis | |
dc.subject | Interspecific interactions | |
dc.subject | Mutualistic Networks | |
dc.subject | Temperature | |
dc.subject | Patterns | |
dc.subject | Subsets | |
dc.subject | Systems | |
dc.subject | Faunas | |
dc.title | An analytic approach to the measurement of nestedness in bipartite networks | |
dc.type | Artículos de revistas | |