dc.creatorAraujo, AIL
dc.creatorCorso, G
dc.creatorAlmeida, AM
dc.creatorLewinsohn, TM
dc.date2010
dc.dateAPR 1
dc.date2014-11-19T19:32:59Z
dc.date2015-11-26T17:30:29Z
dc.date2014-11-19T19:32:59Z
dc.date2015-11-26T17:30:29Z
dc.date.accessioned2018-03-29T00:17:26Z
dc.date.available2018-03-29T00:17:26Z
dc.identifierPhysica A-statistical Mechanics And Its Applications. Elsevier Science Bv, v. 389, n. 7, n. 1405, n. 1411, 2010.
dc.identifier0378-4371
dc.identifierWOS:000274875300009
dc.identifier10.1016/j.physa.2009.11.030
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54310
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/54310
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54310
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285532
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionWe present all index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the Sum of distances of the Occupied elements in the incidence matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the simplest case the distance of the matrix element a(i,j) is d(i,j) = i + j, the Manhattan distance. A generic distance is obtained as d(i,j) = (i(x) + j(x))(1/x). The nestedness index is defined by nu = 1 - tau, where tau is the "temperature" of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix where the temperature is defined as one. We discuss all important feature of the problem: matrix Occupancy p. We address this question using a metric index X that adjusts for matrix Occupancy. (C) 2009 Elsevier B.V. All rights reserved.
dc.description389
dc.description7
dc.description1405
dc.description1411
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationPhysica A-statistical Mechanics And Its Applications
dc.relationPhysica A
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectPatterns in networks
dc.subjectBipartite networks
dc.subjectMetacommunity analysis
dc.subjectInterspecific interactions
dc.subjectMutualistic Networks
dc.subjectTemperature
dc.subjectPatterns
dc.subjectSubsets
dc.subjectSystems
dc.subjectFaunas
dc.titleAn analytic approach to the measurement of nestedness in bipartite networks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución