dc.creatorMUJICA, J
dc.date1991
dc.dateAPR
dc.date2014-12-16T11:35:27Z
dc.date2015-11-26T17:30:08Z
dc.date2014-12-16T11:35:27Z
dc.date2015-11-26T17:30:08Z
dc.date.accessioned2018-03-29T00:17:05Z
dc.date.available2018-03-29T00:17:05Z
dc.identifierTransactions Of The American Mathematical Society. Amer Mathematical Soc, v. 324, n. 2, n. 867, n. 887, 1991.
dc.identifier0002-9947
dc.identifierWOS:A1991FG94400016
dc.identifier10.2307/2001745
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81085
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81085
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81085
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285449
dc.descriptionThe main result in this paper is the following linearization theorem. For each open set U in a complex Banach space E, there is a complex Banach space G infinity(U) and a bounded holomorphic mapping g(U): U --> G infinity(U) with the following universal property: For each complex Banach space F and each bounded holomorphic mapping f: U --> F, there is a unique continuous linear operator T(f): G infinity(U) --> F such that T(f) omicron g(U) = f. The correspondence f --> T(f) is an isometric isomorphism between the space H infinity(U ; F) of all bounded holomorphic mappings from U into F, and the space L(G infinity(U); F) of all continuous linear operators from G infinity(U) into F. These properties characterize G infinity(U) uniquely up to an isometric isomorphism. The rest of the paper is devoted to the study of some aspects of the interplay between the spaces H infinity(U; F) and L(G infinity(U); F).
dc.description324
dc.description2
dc.description867
dc.description887
dc.languageen
dc.publisherAmer Mathematical Soc
dc.publisherProvidence
dc.relationTransactions Of The American Mathematical Society
dc.relationTrans. Am. Math. Soc.
dc.rightsaberto
dc.sourceWeb of Science
dc.titleLINEARIZATION OF BOUNDED HOLOMORPHIC MAPPINGS ON BANACH-SPACES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución