dc.creatorDussan, MP
dc.creatorNoronha, MH
dc.date2002
dc.dateJUN
dc.date2014-11-19T18:21:16Z
dc.date2015-11-26T17:30:06Z
dc.date2014-11-19T18:21:16Z
dc.date2015-11-26T17:30:06Z
dc.date.accessioned2018-03-29T00:17:05Z
dc.date.available2018-03-29T00:17:05Z
dc.identifierPacific Journal Of Mathematics. Pacific Journal Mathematics, v. 204, n. 2, n. 319, n. 334, 2002.
dc.identifier0030-8730
dc.identifierWOS:000175933200003
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53196
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53196
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53196
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285444
dc.descriptionIn this paper we study compact manifolds with 2-nonnegative Ricci operator, assuming that their Weyl operator satisfies certain conditions which generalize conformal flatness. As a consequence, we obtain that such manifolds are either locally symmetric or their Betti numbers between and n-2 vanish. We also study the topology of compact hypersurfaces with 2-nonnegative Ricci operator.
dc.description204
dc.description2
dc.description319
dc.description334
dc.languageen
dc.publisherPacific Journal Mathematics
dc.publisherBerkeley
dc.publisherEUA
dc.relationPacific Journal Of Mathematics
dc.relationPac. J. Math.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectNonnegative Isotropic Curvature
dc.subjectCompact Riemannian-manifolds
dc.subjectHarmonic Curvature
dc.subject4-manifolds
dc.titleManifolds with 2-nonnegative Ricci operator
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución