dc.creator | Dussan, MP | |
dc.creator | Noronha, MH | |
dc.date | 2002 | |
dc.date | JUN | |
dc.date | 2014-11-19T18:21:16Z | |
dc.date | 2015-11-26T17:30:06Z | |
dc.date | 2014-11-19T18:21:16Z | |
dc.date | 2015-11-26T17:30:06Z | |
dc.date.accessioned | 2018-03-29T00:17:05Z | |
dc.date.available | 2018-03-29T00:17:05Z | |
dc.identifier | Pacific Journal Of Mathematics. Pacific Journal Mathematics, v. 204, n. 2, n. 319, n. 334, 2002. | |
dc.identifier | 0030-8730 | |
dc.identifier | WOS:000175933200003 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53196 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/53196 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/53196 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1285444 | |
dc.description | In this paper we study compact manifolds with 2-nonnegative Ricci operator, assuming that their Weyl operator satisfies certain conditions which generalize conformal flatness. As a consequence, we obtain that such manifolds are either locally symmetric or their Betti numbers between and n-2 vanish. We also study the topology of compact hypersurfaces with 2-nonnegative Ricci operator. | |
dc.description | 204 | |
dc.description | 2 | |
dc.description | 319 | |
dc.description | 334 | |
dc.language | en | |
dc.publisher | Pacific Journal Mathematics | |
dc.publisher | Berkeley | |
dc.publisher | EUA | |
dc.relation | Pacific Journal Of Mathematics | |
dc.relation | Pac. J. Math. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | Nonnegative Isotropic Curvature | |
dc.subject | Compact Riemannian-manifolds | |
dc.subject | Harmonic Curvature | |
dc.subject | 4-manifolds | |
dc.title | Manifolds with 2-nonnegative Ricci operator | |
dc.type | Artículos de revistas | |