dc.creatorGantert, N
dc.creatorMuller, S
dc.creatorPopov, S
dc.creatorVachkovskaia, M
dc.date2010
dc.dateDEC
dc.date2014-11-19T16:31:39Z
dc.date2015-11-26T17:30:02Z
dc.date2014-11-19T16:31:39Z
dc.date2015-11-26T17:30:02Z
dc.date.accessioned2018-03-29T00:17:01Z
dc.date.available2018-03-29T00:17:01Z
dc.identifierJournal Of Theoretical Probability. Springer/plenum Publishers, v. 23, n. 4, n. 1002, n. 1014, 2010.
dc.identifier0894-9840
dc.identifierWOS:000285305200004
dc.identifier10.1007/s10959-009-0227-5
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73937
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/73937
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73937
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285429
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionWe study survival of nearest-neighbor branching random walks in random environment (BRWRE) on Z. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and strong local survival regimes coincide for BRWRE and that they can be characterized with the spectral radius of the first moment matrix of the process. These results are generalizations of the classification of BRWRE in recurrent and transient regimes. Our main result is a characterization of global survival that is given in terms of Lyapunov exponents of an infinite product of i.i.d. 2x2 random matrices.
dc.description23
dc.description4
dc.description1002
dc.description1014
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionDFG [MU 2868/1-1]
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFAPESP [04/07276-2]
dc.descriptionCNPq [300328/2005-2, 304561/2006-1, 471925/2006-3]
dc.descriptionDFG [MU 2868/1-1]
dc.languageen
dc.publisherSpringer/plenum Publishers
dc.publisherNew York
dc.publisherEUA
dc.relationJournal Of Theoretical Probability
dc.relationJ. Theor. Probab.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectLocal extinction
dc.subjectGlobal extinction
dc.subjectRandom matrices
dc.subjectLyapunov exponent
dc.subjectLimit-theorems
dc.subjectMatrices
dc.subjectTrees
dc.titleSurvival of Branching Random Walks in Random Environment
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución