dc.creatorHillman, JA
dc.creatorKochloukova, DH
dc.date2007
dc.dateMAY
dc.date2014-11-19T16:14:30Z
dc.date2015-11-26T17:29:59Z
dc.date2014-11-19T16:14:30Z
dc.date2015-11-26T17:29:59Z
dc.date.accessioned2018-03-29T00:16:57Z
dc.date.available2018-03-29T00:16:57Z
dc.identifierMathematische Zeitschrift. Springer, v. 256, n. 1, n. 45, n. 56, 2007.
dc.identifier0025-5874
dc.identifierWOS:000244338200003
dc.identifier10.1007/s00209-006-0058-3
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/66993
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/66993
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/66993
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285414
dc.descriptionWe show that an infinite cyclic covering space M' of a PD (n) -complex M is a PD (n-1)-complex if and only if chi(M) = 0, M' is homotopy equivalent to a complex with finite [(n-1)/2]-skeleton and pi(1)(M') is finitely presentable. This is best possible in terms of minimal finiteness assumptions on the covering space. We give also a corresponding result for covering spaces M (nu) with covering group a PD (r) -group under a slightly stricter finiteness condition.
dc.description256
dc.description1
dc.description45
dc.description56
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationMathematische Zeitschrift
dc.relationMath. Z.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectcoinduced module
dc.subjectfiniteness condition
dc.subjectfinite domination
dc.subjectinfinite cyclic cover
dc.subjectNovikov ring
dc.subjectPoincare duality
dc.subjectKnot-like Groups
dc.subjectAlgebraic Classification
dc.subjectPoincare Duality
dc.subjectNovikov Rings
dc.subjectResolutions
dc.subjectFibrations
dc.subjectConjecture
dc.titleFiniteness conditions and PDr-group covers of PDn-complexes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución