dc.creatorCohen, N
dc.creatorDancis, J
dc.date1998
dc.dateJUL
dc.date2014-12-02T16:27:12Z
dc.date2015-11-26T17:28:53Z
dc.date2014-12-02T16:27:12Z
dc.date2015-11-26T17:28:53Z
dc.date.accessioned2018-03-29T00:15:58Z
dc.date.available2018-03-29T00:15:58Z
dc.identifierSiam Journal On Matrix Analysis And Applications. Siam Publications, v. 19, n. 3, n. 583, n. 612, 1998.
dc.identifier0895-4798
dc.identifierWOS:000072580600001
dc.identifier10.1137/S0895479895296471
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/60125
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/60125
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/60125
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285156
dc.descriptionThe full set of completion inertias is described in terms of seven linear inequalities involving inertias and ranks of specified submatrices. The minimal completion rank for P is computed. We study the completion inertias of partially specified hermitian block band matrices, using a block generalization of the Dym-Gohberg algorithm. At each inductive step, we use our classification of the possible inertias for hermitian completions of bordered matrices. We show that when all the maximal specified submatrices are invertible, any inertia consistent with Poincare's inequalities is obtainable. These results generalize the nonblock band results of Dancis [SIAM J. Matrix Anal. Appl., 14 (1993), pg 813-829]. All our results remain valid for real symmetric completions.
dc.description19
dc.description3
dc.description583
dc.description612
dc.languageen
dc.publisherSiam Publications
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationSiam Journal On Matrix Analysis And Applications
dc.relationSIAM J. Matrix Anal. Appl.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectmatrices
dc.subjecthermitian
dc.subjectrank
dc.subjectinertia
dc.subjectcompletion
dc.subjectminimal rank
dc.subjectPartial Hermitian Matrices
dc.subjectPrincipal Submatrices
dc.subjectNegative Signature
dc.subjectExtensions
dc.subjectOperators
dc.titleInertias of block band matrix completions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución