dc.creatorGarcez, KMS
dc.creatorAntonelli, A
dc.date2011
dc.date47058
dc.date2014-07-30T18:08:04Z
dc.date2015-11-26T17:28:52Z
dc.date2014-07-30T18:08:04Z
dc.date2015-11-26T17:28:52Z
dc.date.accessioned2018-03-29T00:15:56Z
dc.date.available2018-03-29T00:15:56Z
dc.identifierJournal Of Chemical Physics. Amer Inst Physics, v. 135, n. 20, 2011.
dc.identifier0021-9606
dc.identifierWOS:000297944600027
dc.identifier10.1063/1.3663387
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70173
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/70173
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1285151
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionWe investigate the pressure effects on the transitions between the disordered phases in supercooled liquid silicon through Monte Carlo simulations and efficient methods to compute free energies. Our calculations, using an environment dependent interatomic potential for Si, indicate that at zero pressure the liquid-liquid phase transition, between the high density liquid and the low density liquid, occurs at a temperature 325K below melting. We found that the liquid-liquid transition temperature decreases with increasing pressure, following the liquid-solid coexistence curve. As pressure increases, the liquid-liquid coexistence curve approaches the region where the glass transition between the low density liquid and the low density amorphous takes place. Above 5 GPa, our calculations show that the liquid-liquid transition is suppressed by the glassy dynamics of the system. We also found that above 5 GPa, the glass transition temperature is lower than that at lower pressures, suggesting that under these conditions the glass transition occurs between the high density liquid and the high density amorphous. (C) 2011 American Institute of Physics. [doi:10.1063/1.3663387]
dc.description135
dc.description20
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAEPEX/UNICAMP
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.languageen
dc.publisherAmer Inst Physics
dc.publisherMelville
dc.publisherEUA
dc.relationJournal Of Chemical Physics
dc.relationJ. Chem. Phys.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectAmorphous-silicon
dc.subjectFree-energy
dc.subjectCrystallization
dc.subjectWater
dc.subjectSimulation
dc.subjectMaxima
dc.subjectPoint
dc.subjectSi
dc.titlePressure effects on the transitions between disordered phases in supercooled liquid silicon
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución