dc.creatorTiago, ML
dc.creatordeCarvalho, TO
dc.creatordeAguiar, MAM
dc.date1997
dc.dateJAN
dc.date2014-12-16T11:37:40Z
dc.date2015-11-26T17:27:53Z
dc.date2014-12-16T11:37:40Z
dc.date2015-11-26T17:27:53Z
dc.date.accessioned2018-03-29T00:15:02Z
dc.date.available2018-03-29T00:15:02Z
dc.identifierPhysical Review E. American Physical Soc, v. 55, n. 1, n. 65, n. 70, 1997.
dc.identifier1063-651X
dc.identifierWOS:A1997WD54500014
dc.identifier10.1103/PhysRevE.55.65
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/78229
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/78229
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/78229
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1284914
dc.descriptionWe derive a boundary integral equation to compute the eigenvalues of two-dimensional billiards subjected to a magnetic field. The integral requires the Green's function of the boundary-free problem with the magnetic field pointing in the opposite direction. This Green's function is computed for the case of a constant magnetic field perpendicular to the billiard and some applications ate discussed. The elliptical billiard is then studied numerically as an example of a nontrivial application.
dc.description55
dc.description1
dc.descriptionA
dc.description65
dc.description70
dc.languageen
dc.publisherAmerican Physical Soc
dc.publisherCollege Pk
dc.publisherEUA
dc.relationPhysical Review E
dc.relationPhys. Rev. E
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectHelmholtz-equation
dc.subjectBallistic Billiards
dc.subjectSystems
dc.subjectEigenfunctions
dc.subjectStadium
dc.subjectChaos
dc.titleBoundary integral method for quantum billiards in a constant magnetic field
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución