dc.creatorMoretti, AC
dc.date2003
dc.date2014-11-16T21:57:39Z
dc.date2015-11-26T17:26:59Z
dc.date2014-11-16T21:57:39Z
dc.date2015-11-26T17:26:59Z
dc.date.accessioned2018-03-29T00:14:08Z
dc.date.available2018-03-29T00:14:08Z
dc.identifierComputational & Applied Mathematics. Soc Brasileira Matematica Aplicada & Computacional, v. 22, n. 1, n. 19, n. 36, 2003.
dc.identifier0101-8205
dc.identifierWOS:000208134700002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53967
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53967
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53967
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1284685
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionAn iterative method for finding the center of a linear programming polytope is presented. The method assumes that we start at a feasible interior point and each iterate is obtained as a convex combination of the orthogonal projection on the half spaces defined by the linear inequalities plus a special projections on the same half spaces. The algorithm is particularly suitable for implementation on computers with parallel processors. We show some examples in two dimensional space to describe geometrically how the method works. Finally, we present computational results on random generated polytopes and linear programming polytopes from NetLib to compare the centering quality of the center using projections and the analytic center approach.
dc.description22
dc.description1
dc.description19
dc.description36
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCNPq [300198/93-0]
dc.languageen
dc.publisherSoc Brasileira Matematica Aplicada & Computacional
dc.publisherSao Carlos Sp
dc.publisherBrasil
dc.relationComputational & Applied Mathematics
dc.relationComput. Appl. Math.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectsuccessive orthogonal projections
dc.subjectcenters of polytopes
dc.subjectlinear programming
dc.titleA weighted projection centering method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución