dc.creatorTeles, LK
dc.creatorFerreira, LG
dc.creatorScolfaro, LMR
dc.creatorLeite, JR
dc.date2004
dc.dateJUN
dc.date2014-11-17T10:33:04Z
dc.date2015-11-26T17:26:56Z
dc.date2014-11-17T10:33:04Z
dc.date2015-11-26T17:26:56Z
dc.date.accessioned2018-03-29T00:14:06Z
dc.date.available2018-03-29T00:14:06Z
dc.identifierPhysical Review B. American Physical Soc, v. 69, n. 24, 2004.
dc.identifier1098-0121
dc.identifierWOS:000222531800062
dc.identifier10.1103/PhysRevB.69.245317
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57917
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/57917
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57917
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1284672
dc.descriptionChemical ordering in cubic epitaxial InxGa1-xN layers is investigated by combining first-principles pseudopotential plane-wave total-energy calculations, a local concentration-dependent cluster-based method, and Monte Carlo simulations. It is found that for the unstrained or fully relaxed layers there are no stable ordered structures, indicating the tendency of the alloy to undergo phase separation, in agreement with previous calculations and experiment. The energetics of the InxGa1-xN layers pseudomorphycally grown on fully relaxed GaN (001) buffers shows that biaxial strain acts as the driving force for chemical ordering in the alloys. It is found that strained InxGa1-xN alloy comprises stable ordered structures which are (210)-oriented superlattices with composition in the range [0.5,0.63], the [AABB] alternation of planes (configuration "chalcopyrite") being the most stable phase.
dc.description69
dc.description24
dc.languageen
dc.publisherAmerican Physical Soc
dc.publisherCollege Pk
dc.publisherEUA
dc.relationPhysical Review B
dc.relationPhys. Rev. B
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectResonant Raman-scattering
dc.subjectTotal-energy Calculations
dc.subjectFundamental-band Gap
dc.subjectAlloy Phase-diagrams
dc.subjectWave Basis-set
dc.subject1st-principles Calculation
dc.subjectElectronic-structure
dc.subjectOptical-properties
dc.subjectAtomic-structure
dc.subjectQuantum Dots
dc.titleTheoretical study of strain-induced ordering in cubic InxGa1-xN epitaxial layers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución