| dc.creator | Santos, RJ | |
| dc.creator | De Pierro, AR | |
| dc.date | 2003 | |
| dc.date | JUN | |
| dc.date | 2014-11-16T20:38:54Z | |
| dc.date | 2015-11-26T17:26:43Z | |
| dc.date | 2014-11-16T20:38:54Z | |
| dc.date | 2015-11-26T17:26:43Z | |
| dc.date.accessioned | 2018-03-29T00:13:52Z | |
| dc.date.available | 2018-03-29T00:13:52Z | |
| dc.identifier | Journal Of Computational And Graphical Statistics. Amer Statistical Assoc, v. 12, n. 2, n. 417, n. 433, 2003. | |
| dc.identifier | 1061-8600 | |
| dc.identifier | WOS:000183370300009 | |
| dc.identifier | 10.1198/1061860031815 | |
| dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52858 | |
| dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/52858 | |
| dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/52858 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1284613 | |
| dc.description | We apply generalized cross-validation (GCV) as a stopping rule for general linear stationary iterative methods for solving very large-scale, ill-conditioned problems. We present a new general formula for the influence operator for these methods and, using this formula and a Monte Carlo approach, we show how to compute the GCV function at a cheaper cost. Then we apply our approach to a well known iterative method (ART) with simulated data in positron emission tomography (PET). | |
| dc.description | 12 | |
| dc.description | 2 | |
| dc.description | 417 | |
| dc.description | 433 | |
| dc.language | en | |
| dc.publisher | Amer Statistical Assoc | |
| dc.publisher | Alexandria | |
| dc.publisher | EUA | |
| dc.relation | Journal Of Computational And Graphical Statistics | |
| dc.relation | J. Comput. Graph. Stat. | |
| dc.rights | fechado | |
| dc.source | Web of Science | |
| dc.subject | emission tomography | |
| dc.subject | ill-posed problems | |
| dc.subject | parameter estimation | |
| dc.subject | Positron Emission Tomography | |
| dc.subject | Least-squares Problems | |
| dc.subject | Truncated Iteration | |
| dc.subject | Em Algorithm | |
| dc.subject | Regularization | |
| dc.subject | Equivalence | |
| dc.subject | Restoration | |
| dc.title | A cheaper way to compute generalized cross-validation as a stopping rule for linear stationary iterative methods | |
| dc.type | Artículos de revistas | |