dc.creatorAlves, MMS
dc.creatorPanek, L
dc.creatorFirer, M
dc.date2008
dc.dateFEB
dc.date2014-11-16T16:46:14Z
dc.date2015-11-26T17:25:53Z
dc.date2014-11-16T16:46:14Z
dc.date2015-11-26T17:25:53Z
dc.date.accessioned2018-03-29T00:13:06Z
dc.date.available2018-03-29T00:13:06Z
dc.identifierAdvances In Mathematics Of Communications. Amer Inst Mathematical Sciences, v. 2, n. 1, n. 95, n. 111, 2008.
dc.identifier1930-5346
dc.identifierWOS:000254707800006
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/65559
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/65559
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/65559
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1284426
dc.descriptionLet P = ({1, 2,..., n}, <=) be a poset, let V-1, V-2,...,V-n, be a family of finite-dimensional spaces over a finite field F-q and let V = V-1 circle plus V-2 circle plus ... V-n. In this paper we endow V with a poset metric such that the P-weight is constant on the non-null vectors of a component V-i, extending both the poset metric introduced by Brualdi et al. and the metric for linear error-block codes introduced by Feng et al.. We classify all poset block structures which admit the extended binary Hamming code [8; 4; 4] to be a one-perfect poset block code, and present poset block structures that turn other extended Hamming codes and the extended Golay code [24; 12; 8] into perfect codes. We also give a complete description of the groups of linear isometrics of these metric spaces in terms of a semi-direct product, which turns out to be similar to the case of poset metric spaces. In particular, we obtain the group of linear isometrics of the error-block metric spaces.
dc.description2
dc.description1
dc.description95
dc.description111
dc.languageen
dc.publisherAmer Inst Mathematical Sciences
dc.publisherSpringfield
dc.publisherEUA
dc.relationAdvances In Mathematics Of Communications
dc.relationAdv. Math. Commun.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectposet codes
dc.subjectlinear error-block codes
dc.subjectperfect poset block codes
dc.subjectextended Hamming codes
dc.subjectlinear isometrics
dc.subjectAutomorphism Group
dc.subjectRosenbloom
dc.subjectSpace
dc.titleError-block codes and poset metrics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución