dc.creatorBertolim, MA
dc.creatorMello, MP
dc.creatorDe Rezende, KA
dc.date2005
dc.date2014-11-16T16:07:51Z
dc.date2015-11-26T17:25:43Z
dc.date2014-11-16T16:07:51Z
dc.date2015-11-26T17:25:43Z
dc.date.accessioned2018-03-29T00:12:55Z
dc.date.available2018-03-29T00:12:55Z
dc.identifierTransactions Of The American Mathematical Society. Amer Mathematical Soc, v. 357, n. 10, n. 4091, n. 4129, 2005.
dc.identifier0002-9947
dc.identifierWOS:000230719300012
dc.identifier10.1090/S0002-9947-04-03641-4
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70589
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/70589
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/70589
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1284380
dc.descriptionIn this article the main theorem establishes the necessity and sufficiency of the Poincare-Hopf inequalities in order for the Morse inequalities to hold. The convex hull of the collection of all Betti number vectors which satisfy the Morse inequalities for a pre-assigned index data determines a Morse polytope defined on the nonnegative orthant. Using results from network flow theory, a scheme is provided for constructing all possible Betti number vectors which satisfy the Morse inequalities for a pre-assigned index data. Geometrical properties of this polytope are described.
dc.description357
dc.description10
dc.description4091
dc.description4129
dc.languageen
dc.publisherAmer Mathematical Soc
dc.publisherProvidence
dc.publisherEUA
dc.relationTransactions Of The American Mathematical Society
dc.relationTrans. Am. Math. Soc.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectConley index
dc.subjectMorse inequalities
dc.subjectMorse polytope
dc.subjectintegral polytope
dc.subjectnetwork-flow theory
dc.titlePoincare-Hopf inequalities
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución