dc.creatorHaiduke, RLA
dc.creatorde Oliveira, AE
dc.creatorBruns, RE
dc.date2002
dc.date39142
dc.date2014-11-16T12:24:29Z
dc.date2015-11-26T17:24:53Z
dc.date2014-11-16T12:24:29Z
dc.date2015-11-26T17:24:53Z
dc.date.accessioned2018-03-29T00:12:10Z
dc.date.available2018-03-29T00:12:10Z
dc.identifierJournal Of Physical Chemistry A. Amer Chemical Soc, v. 106, n. 9, n. 1824, n. 1833, 2002.
dc.identifier1089-5639
dc.identifierWOS:000174398500022
dc.identifier10.1021/jp013587s
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57213
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/57213
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57213
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1284190
dc.descriptionSimple potential models relating experimental 1s electron ionization energies for B, N (sp and sp(3) hybrids), O, and F atoms; 1s and 2p ionization energies for P atoms; and 2s and 2p ionization energies for Cl atoms as a function of their atomic mean dipole moment derivatives determined from experimental gas phase infrared fundamental band intensities a-re reported. Potential models using theoretical Koopmans' energies and generalized atomic polar tensor (GAPT) charges are found to form even more precise models than those using experimental data. This is expected because the potential models depend only on the electronic structures of molecules before ionization takes place and do not take into account relaxation effects. If the experimental ionization energies are adjusted by their relaxation energies, models similar to those obtained using Koopmans' energies are determined, The models permit a simple understanding of substituent effects on core ionization energies in terms of atomic charges in molecules. Most of the potential model slopes investigated are shown to be approximately proportional to the inverse atomic radii of the atom being ionized. Core-valence electron repulsion values inferred from the potential models obtained from experimental data are somewhat smaller than those calculated using Slater orbitals of isolated atoms. The potential model intercepts for Is and 2p electrons are shown to be proportional to the square of the nuclear charge, consistent with their interpretation as core electron ionization energies of neutral atoms. 1s He, Ne, and Ar and 2p Ar, Kr, and Xe core ionization energies obey the linear relationships obtained for the model intercepts. The results suggest that mean dipole moment derivatives obtained from infrared intensities can be interpreted as atomic charges.
dc.description106
dc.description9
dc.description1824
dc.description1833
dc.languageen
dc.publisherAmer Chemical Soc
dc.publisherWashington
dc.publisherEUA
dc.relationJournal Of Physical Chemistry A
dc.relationJ. Phys. Chem. A
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectElectron-binding-energies
dc.subjectInfrared Vibrational Intensities
dc.subjectPolar Tensors
dc.subjectEffective Charges
dc.subjectHydrides
dc.subjectIv
dc.titleCore ionization energies, mean dipole moment derivatives, and simple potential models for B, N, O, F, P, Cl, and Br atoms in molecules
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución