dc.creatorRoman-Flores, H
dc.creatorChalco-Cano, Y
dc.creatorRojas-Medar, M
dc.date2003
dc.dateOCT-NOV
dc.date2014-11-16T07:23:34Z
dc.date2015-11-26T17:23:54Z
dc.date2014-11-16T07:23:34Z
dc.date2015-11-26T17:23:54Z
dc.date.accessioned2018-03-29T00:11:11Z
dc.date.available2018-03-29T00:11:11Z
dc.identifierComputers & Mathematics With Applications. Pergamon-elsevier Science Ltd, v. 46, n. 41890, n. 1245, n. 1251, 2003.
dc.identifier0898-1221
dc.identifierWOS:000186838100007
dc.identifier10.1016/S0898-1221(03)00356-0
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/57176
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/57176
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/57176
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283941
dc.descriptionThe purpose of this work is studying the approximation in D-metric of upper semi-continuous and normal fuzzy sets with compact support on R-n by using the convolution (fdelg)(x) = sup{f(x - y) boolean AND g(y) : y is an element of X} between two fuzzy sets, where the distance D(f, g) is the supremum of the Hausdorff distances of their corresponding level sets. In particular, by using del-convolution, a density result is proved and some applications in Choquet integration of fuzzy numbers are presented. (C) 2003 Elsevier Ltd. All rights reserved.
dc.description46
dc.description41890
dc.description1245
dc.description1251
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationComputers & Mathematics With Applications
dc.relationComput. Math. Appl.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectfuzzy sets
dc.subjectHausdorff metric
dc.subjectconvolution
dc.subjectChoquet's integrals
dc.titleConvolution of fuzzy sets and applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución