dc.creatorBieri, R
dc.creatorGeoghegan, R
dc.creatorKochloukova, DH
dc.date2010
dc.date2014-11-16T07:18:12Z
dc.date2015-11-26T17:23:44Z
dc.date2014-11-16T07:18:12Z
dc.date2015-11-26T17:23:44Z
dc.date.accessioned2018-03-29T00:11:02Z
dc.date.available2018-03-29T00:11:02Z
dc.identifierGroups Geometry And Dynamics. European Mathematical Soc, v. 4, n. 2, n. 263, n. 273, 2010.
dc.identifier1661-7207
dc.identifierWOS:000275193000003
dc.identifier10.4171/GGD/83
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72451
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/72451
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/72451
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283902
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThompson's group F is the group of all increasing dyadic PL homeomorphisms of the closed unit interval. We compute Sigma(m)(F) and Sigma(m)(F;Z), the homotopical and homological Bieri-Neumann-Strebel-Renz invariants of F, and show that Sigma(m)(F) = Sigma(m)(F;Z). As an application, we show that, for every m, F has subgroups of type F(m-1) which are not of type FP(m) (thus certainly not of type F(m)).
dc.description4
dc.description2
dc.description263
dc.description273
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageen
dc.publisherEuropean Mathematical Soc
dc.publisherZurich
dc.publisherSuíça
dc.relationGroups Geometry And Dynamics
dc.relationGroup. Geom. Dyn.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectThompson's group
dc.subjectfiniteness properties
dc.subjecthomological and homotopical Sigma invariants
dc.subjectHigher Geometric Invariants
dc.subjectMetabelian-groups
dc.subjectGraph
dc.titleThe Sigma invariants of Thompson's group F
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución