dc.creator | Bieri, R | |
dc.creator | Geoghegan, R | |
dc.creator | Kochloukova, DH | |
dc.date | 2010 | |
dc.date | 2014-11-16T07:18:12Z | |
dc.date | 2015-11-26T17:23:44Z | |
dc.date | 2014-11-16T07:18:12Z | |
dc.date | 2015-11-26T17:23:44Z | |
dc.date.accessioned | 2018-03-29T00:11:02Z | |
dc.date.available | 2018-03-29T00:11:02Z | |
dc.identifier | Groups Geometry And Dynamics. European Mathematical Soc, v. 4, n. 2, n. 263, n. 273, 2010. | |
dc.identifier | 1661-7207 | |
dc.identifier | WOS:000275193000003 | |
dc.identifier | 10.4171/GGD/83 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/72451 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/72451 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/72451 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1283902 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Thompson's group F is the group of all increasing dyadic PL homeomorphisms of the closed unit interval. We compute Sigma(m)(F) and Sigma(m)(F;Z), the homotopical and homological Bieri-Neumann-Strebel-Renz invariants of F, and show that Sigma(m)(F) = Sigma(m)(F;Z). As an application, we show that, for every m, F has subgroups of type F(m-1) which are not of type FP(m) (thus certainly not of type F(m)). | |
dc.description | 4 | |
dc.description | 2 | |
dc.description | 263 | |
dc.description | 273 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.language | en | |
dc.publisher | European Mathematical Soc | |
dc.publisher | Zurich | |
dc.publisher | Suíça | |
dc.relation | Groups Geometry And Dynamics | |
dc.relation | Group. Geom. Dyn. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | Thompson's group | |
dc.subject | finiteness properties | |
dc.subject | homological and homotopical Sigma invariants | |
dc.subject | Higher Geometric Invariants | |
dc.subject | Metabelian-groups | |
dc.subject | Graph | |
dc.title | The Sigma invariants of Thompson's group F | |
dc.type | Artículos de revistas | |