dc.creatorDe Figueiredo, DG
dc.creatorGossez, JP
dc.creatorUbilla, P
dc.date2003
dc.dateAPR 20
dc.date2014-11-16T04:07:44Z
dc.date2015-11-26T17:23:09Z
dc.date2014-11-16T04:07:44Z
dc.date2015-11-26T17:23:09Z
dc.date.accessioned2018-03-29T00:10:30Z
dc.date.available2018-03-29T00:10:30Z
dc.identifierJournal Of Functional Analysis. Academic Press Inc Elsevier Science, v. 199, n. 2, n. 452, n. 467, 2003.
dc.identifier0022-1236
dc.identifierWOS:000182440700008
dc.identifier10.1016/S0022-1236(02)00060-5
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52565
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/52565
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/52565
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283761
dc.descriptionIn this paper the usual notions of superlinearity and sublinearity for semilinear problems like -Deltau =f (x, u) are given a local form and extended to indefinite nonlinearities. Here f (x, s) is allowed to change sign or to vanish for s near zero as well as for s near infinity. Some of the well-known results of Ambrosetti-Brezis-Cerami are partially extended to this context. (C) 2003 Elsevier Science (USA). All rights reserved.
dc.description199
dc.description2
dc.description452
dc.description467
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Functional Analysis
dc.relationJ. Funct. Anal.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectsuperlinearity
dc.subjectsublinearity
dc.subjectindefinite nonlinearity
dc.subjectconcave-convex nonlinearity
dc.subjectsemilinear elliptic problem
dc.subjectNonlinearities
dc.titleLocal superlinearity and sublinearity for indefinite semilinear elliptic problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución