dc.creatorMacambira, EM
dc.creatorde Souza, CC
dc.date2000
dc.date37043
dc.date2014-12-02T16:25:36Z
dc.date2015-11-26T17:22:41Z
dc.date2014-12-02T16:25:36Z
dc.date2015-11-26T17:22:41Z
dc.date.accessioned2018-03-29T00:10:06Z
dc.date.available2018-03-29T00:10:06Z
dc.identifierEuropean Journal Of Operational Research. Elsevier Science Bv, v. 123, n. 2, n. 346, n. 371, 2000.
dc.identifier0377-2217
dc.identifierWOS:000086582500011
dc.identifier10.1016/S0377-2217(99)00262-3
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74935
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/74935
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74935
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283658
dc.descriptionLet k(n) = (V,E) be the complete undirected graph with weights c(e) associated to the edges in E. We consider the problem of finding the subclique C = (U, F) of K-n such that the sum of the weights of the edges in F is maximized and \U\ less than or equal to b, for some b is an element of [1,...,n]. This problem is called the Maximum Edge-Weighted Clique Problem ((MEWCP) and is NP-hard. In this paper we investigate the facial structure of the polytope associated to the MEWCP introducing new classes of facet defining inequalities. Computational experiments with a branch-and-cut algorithm are reported confirming the strength of these inequalities. All instances with up to 48 nodes could be solved without entering into the branching phase. Moreover, we show that some of these new inequalities also define facets of the Boolean Quadric Polytope and generalize many of the previously known inequalities for this well-studied polytope. (C) 2000 Elsevier Science B.V. All rights reserved.
dc.description123
dc.description2
dc.description346
dc.description371
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationEuropean Journal Of Operational Research
dc.relationEur. J. Oper. Res.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectedge-weighted cliques
dc.subjectpolyhedral combinatorics
dc.subjectinteger programming
dc.subjectbranch-and-cut
dc.subjectBoolean Quadric Polytope
dc.subjectPolytope
dc.titleThe edge-weighted clique problem: Valid inequalities, facets and polyhedral computations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución