dc.creatorPereira, CEL
dc.creatorBittencourt, ML
dc.date2008
dc.dateDEC
dc.date2014-11-15T17:19:30Z
dc.date2015-11-26T17:20:58Z
dc.date2014-11-15T17:19:30Z
dc.date2015-11-26T17:20:58Z
dc.date.accessioned2018-03-29T00:08:32Z
dc.date.available2018-03-29T00:08:32Z
dc.identifierStructural And Multidisciplinary Optimization. Springer, v. 37, n. 2, n. 149, n. 163, 2008.
dc.identifier1615-147X
dc.identifierWOS:000260967300004
dc.identifier10.1007/s00158-007-0223-2
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/77727
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/77727
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/77727
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283259
dc.descriptionThe aim of the present work is to apply the topological sensitivity analysis (TSA) to large-deformation elasticity based on the total Lagrangian formulation. The TSA results in a scalar function, denominated topological derivative, that gives for each point of the domain the sensitivity of a given cost function when a small hole is created. An approximated expression for the topological derivative is obtained by numerical asymptotic analysis. Numerical results of the presented approach are considered for elastic plane problems.
dc.description37
dc.description2
dc.description149
dc.description163
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationStructural And Multidisciplinary Optimization
dc.relationStruct. Multidiscip. Optim.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectTopological optimization
dc.subjectFinite element method
dc.subjectLinear and nonlinear elasticity
dc.subjectSensitivity analysis
dc.subjectTopological derivative
dc.subjectGeneralized Shape Optimization
dc.titleTopological sensitivity analysis in large deformation problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución