dc.creatorPinto, AGS
dc.date2006
dc.date37073
dc.date2014-11-15T15:17:08Z
dc.date2015-11-26T17:20:31Z
dc.date2014-11-15T15:17:08Z
dc.date2015-11-26T17:20:31Z
dc.date.accessioned2018-03-29T00:08:06Z
dc.date.available2018-03-29T00:08:06Z
dc.identifierJournal Of Algebra. Academic Press Inc Elsevier Science, v. 301, n. 1, n. 96, n. 111, 2006.
dc.identifier0021-8693
dc.identifierWOS:000238298600005
dc.identifier10.1016/j.jalgebra.2005.09.002
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/69624
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/69624
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/69624
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283154
dc.descriptionWe characterize the modules B of homological type FPm over Z(p) [G], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p Z(p) [Q]-module that is viewed as a pro-p Z(p) [G]-module via the projection G -> Q. The characterization is given in terms of the invariant introduced by King [J.D. King, A geometric invariant for metabelian pro-p groups, J. London Math. Soc. (2) 60 (1) (1999) 83-94] and is a generalization of the case when B = Z(p) is considered as a trivial Z(p) [G]-module that gives the classification of metabelian pro-p groups of type FPm [D.H. Kochloukova, Metabelian pro-p groups of type FPm, J. Group Theory 3 (4) (2000) 419-431]. (c) 2005 Published by Elsevier Inc.
dc.description301
dc.description1
dc.description96
dc.description111
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Algebra
dc.relationJ. Algebra
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectmetabelian pro-p groups
dc.subjectpro-p modules
dc.subjecthomological type FPm
dc.subjectAlgebras
dc.titleHomological finiteness properties of pro-p modules over metabelian pro-p groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución