dc.creatorAlves, MMS
dc.creatorGeronimo, JR
dc.creatorPalazzo, R
dc.creatorCosta, SIR
dc.creatorInterlando, JC
dc.creatorAraujo, MC
dc.date2002
dc.date46753
dc.date2014-11-15T12:15:52Z
dc.date2015-11-26T17:19:54Z
dc.date2014-11-15T12:15:52Z
dc.date2015-11-26T17:19:54Z
dc.date.accessioned2018-03-29T00:07:33Z
dc.date.available2018-03-29T00:07:33Z
dc.identifierDiscrete Mathematics. Elsevier Science Bv, v. 243, n. 41699, n. 187, n. 194, 2002.
dc.identifier0012-365X
dc.identifierWOS:000173061500012
dc.identifier10.1016/S0012-365X(01)00206-0
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/80079
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/80079
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/80079
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1283010
dc.descriptionIn this paper we establish the connections between two different extensions Of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier Science B.V. All rights reserved.
dc.description243
dc.description41699
dc.description187
dc.description194
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationDiscrete Mathematics
dc.relationDiscret. Math.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectbinary codes
dc.subjectZ(4)-linearity
dc.subjectpropelinear codes
dc.subjectisometry groups
dc.subjectG-linearity
dc.titleRelating propelinear and binary G-linear codes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución