| dc.creator | Fernandes, FZ |  | 
| dc.creator | Lopes, MC |  | 
| dc.date | 2007 |  | 
| dc.date | DEC |  | 
| dc.date | 2014-11-15T10:19:06Z |  | 
| dc.date | 2015-11-26T17:19:27Z |  | 
| dc.date | 2014-11-15T10:19:06Z |  | 
| dc.date | 2015-11-26T17:19:27Z |  | 
| dc.date.accessioned | 2018-03-29T00:07:07Z |  | 
| dc.date.available | 2018-03-29T00:07:07Z |  | 
| dc.identifier | Mathematical Models & Methods In Applied Sciences. World Scientific Publ Co Pte Ltd, v. 17, n. 12, n. 2035, n. 2053, 2007. |  | 
| dc.identifier | 0218-2025 |  | 
| dc.identifier | WOS:000251742700003 |  | 
| dc.identifier | 10.1142/S0218202507002558 |  | 
| dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76825 |  | 
| dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/76825 |  | 
| dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/76825 |  | 
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1282909 |  | 
| dc.description | The purpose of this work is to prove the existence of a weak solution of the two-dimensional incompressible Euler equations on a noncylindrical domain consisting of a smooth, bounded, connected and simply connected domain undergoing a prescribed motion. We prove the existence of a weak solution for initial vorticity in L-p, for p > 1. This work complements a similar result by C. He and L. Hsiao, who proved existence assuming that the flow velocity is tangent to the moving boundary, see Ref. 6. |  | 
| dc.description | 17 |  | 
| dc.description | 12 |  | 
| dc.description | 2035 |  | 
| dc.description | 2053 |  | 
| dc.language | en |  | 
| dc.publisher | World Scientific Publ Co Pte Ltd |  | 
| dc.publisher | Singapore |  | 
| dc.publisher | Singapura |  | 
| dc.relation | Mathematical Models & Methods In Applied Sciences |  | 
| dc.relation | Math. Models Meth. Appl. Sci. |  | 
| dc.rights | fechado |  | 
| dc.source | Web of Science |  | 
| dc.subject | incompressible flow |  | 
| dc.subject | ideal flow |  | 
| dc.subject | vanishing viscosity |  | 
| dc.title | Two-dimensional incompressible ideal flows in a noncylindrical material domain |  | 
| dc.type | Artículos de revistas |  |