dc.creatorFernandes, FZ
dc.creatorLopes, MC
dc.date2007
dc.dateDEC
dc.date2014-11-15T10:19:06Z
dc.date2015-11-26T17:19:27Z
dc.date2014-11-15T10:19:06Z
dc.date2015-11-26T17:19:27Z
dc.date.accessioned2018-03-29T00:07:07Z
dc.date.available2018-03-29T00:07:07Z
dc.identifierMathematical Models & Methods In Applied Sciences. World Scientific Publ Co Pte Ltd, v. 17, n. 12, n. 2035, n. 2053, 2007.
dc.identifier0218-2025
dc.identifierWOS:000251742700003
dc.identifier10.1142/S0218202507002558
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76825
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76825
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76825
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282909
dc.descriptionThe purpose of this work is to prove the existence of a weak solution of the two-dimensional incompressible Euler equations on a noncylindrical domain consisting of a smooth, bounded, connected and simply connected domain undergoing a prescribed motion. We prove the existence of a weak solution for initial vorticity in L-p, for p > 1. This work complements a similar result by C. He and L. Hsiao, who proved existence assuming that the flow velocity is tangent to the moving boundary, see Ref. 6.
dc.description17
dc.description12
dc.description2035
dc.description2053
dc.languageen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.publisherSingapore
dc.publisherSingapura
dc.relationMathematical Models & Methods In Applied Sciences
dc.relationMath. Models Meth. Appl. Sci.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectincompressible flow
dc.subjectideal flow
dc.subjectvanishing viscosity
dc.titleTwo-dimensional incompressible ideal flows in a noncylindrical material domain
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución