dc.creatorFelmer, P
dc.creatorMontenegro, M
dc.creatorQuaas, A
dc.date2009
dc.date36892
dc.date2014-11-15T08:35:06Z
dc.date2015-11-26T17:19:05Z
dc.date2014-11-15T08:35:06Z
dc.date2015-11-26T17:19:05Z
dc.date.accessioned2018-03-29T00:06:45Z
dc.date.available2018-03-29T00:06:45Z
dc.identifierJournal Of Differential Equations. Academic Press Inc Elsevier Science, v. 246, n. 1, n. 39, n. 49, 2009.
dc.identifier0022-0396
dc.identifierWOS:000261314600003
dc.identifier10.1016/j.jde.2008.02.034
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76517
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76517
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76517
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282812
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionIn this note we are concerned with the strong maximum principle (SMP) and the compact support principle (CSP) for non-negative solutions to quasilinear elliptic inequalities of the form div (A(vertical bar del i vertical bar del u) + G(vertical bar del u vertical bar) - f(u) <= 0 in Omega, div (A(vertical bar del i vertical bar del u) + G(vertical bar del u vertical bar) - f(u) >= 0 in R(N)\B(r)(0), respectively. We give new conditions on the data (A, G.f) to obtain (SMP) and (CSP). When these conditions are particularized to the m-Laplacian and pure power nonlinearities we completely classify the data according to the validity of the (CSP) or the (SMP). In doing so we clarify the general situation and we consider a case not covered in the literature. (c) 2008 Elsevier Inc. All rights reserved.
dc.description246
dc.description1
dc.description39
dc.description49
dc.descriptionFondecyt [1070314, 1070264]
dc.descriptionFONDAP de Matematicas Aplicadas
dc.descriptionUSM [12.05.24]
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFondecyt [1070314, 1070264]
dc.descriptionUSM [12.05.24]
dc.descriptionFAPESP [2005/55262-3]
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Differential Equations
dc.relationJ. Differ. Equ.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectMaximum principle
dc.subjectCompact support
dc.subjectUniqueness
dc.subjectElliptic-equations
dc.subjectInequalities
dc.titleA note on the strong maximum principle and the compact support principle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución