dc.creatorQueiroz, LMO
dc.creatorLyra, C
dc.date2009
dc.dateFEB
dc.date2014-11-15T05:08:54Z
dc.date2015-11-26T17:18:26Z
dc.date2014-11-15T05:08:54Z
dc.date2015-11-26T17:18:26Z
dc.date.accessioned2018-03-29T00:06:10Z
dc.date.available2018-03-29T00:06:10Z
dc.identifierIeee Transactions On Power Systems. Ieee-inst Electrical Electronics Engineers Inc, v. 24, n. 1, n. 445, n. 453, 2009.
dc.identifier0885-8950
dc.identifierWOS:000262817200047
dc.identifier10.1109/TPWRS.2008.2009488
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76697
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76697
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76697
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282665
dc.descriptionIn power distribution networks the load varies within any given time frame. It may, therefore, seem that a good approach to reduce losses would be the solving of a network reconfiguration problem to suit each of the significant load variations. However, frequent changes in configuration can trigger outages or cause transient problems; they are best avoided. A recent formulation of this problem explicitly considers load variations and proposes to restrain frequent reconfigurations by assuming that network topologies will remain unchanged for a given planning period. This formulation leads to a much larger optimization problem than that traditionally used for network reconfiguration; moreover, it requires a new approach to optimization which is capable of dealing with energy flows instead of only instantaneous power flows. Such an approach is proposed in this paper, which discusses the design of an adaptive hybrid genetic algorithm that fulfills these new requirements. Key concepts in evolutionary computation and analysis of distribution systems are explored to develop this new algorithm. Application to real case studies certifies its benefits.
dc.description24
dc.description1
dc.description445
dc.description453
dc.languageen
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.publisherPiscataway
dc.publisherEUA
dc.relationIeee Transactions On Power Systems
dc.relationIEEE Trans. Power Syst.
dc.rightsfechado
dc.rightshttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dc.sourceWeb of Science
dc.subjectDistribution of electric power
dc.subjectgenetic algorithms
dc.subjecthybrid genetic algorithms
dc.subjectloss reduction
dc.subjectnetwork reconfiguration
dc.subjecttechnical losses
dc.subjectvariable demands
dc.subjectDistribution-systems
dc.subjectReconfiguration
dc.titleAdaptive Hybrid Genetic Algorithm for Technical Loss Reduction in Distribution Networks Under Variable Demands
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución