Artículos de revistas
The approximation property for spaces of holomorphic functions on infinite-dimensional spaces I
Registro en:
Journal Of Approximation Theory. Academic Press Inc Elsevier Science, v. 126, n. 2, n. 141, n. 156, 2004.
0021-9045
WOS:000220669400003
10.1016/j.jat.2004.01.008
Autor
Dineen, S
Mujica, J
Institución
Resumen
For an open subset U of a locally convex space E, let (H(U), tau(0)) denote the vector space of all holomorphic functions on U, with the compact-open topology. If E is a separable Frechet space with the bounded approximation property, or if E is a (DFC)-space with the approximation property, we show that (H(U), tau(0)) has the approximation property for every open subset U of E. These theorems extend classical results of Aron and Schottenloher. As applications of these approximation theorems we characterize the spectra of certain topological algebras of holomorphic mappings with values in a Banach algebra. (C) 2003 Elsevier Inc. All rights reserved. 126 2 141 156
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
IMAGINARY SPACE VS REAL SPACE IN THE NOBEL PRIZE WINNERS: LE CLÉZIO Y GARCÍA MÁRQUEZ
Alonso Sutil, María Cruz -
Sobolev spaces on locally compact groups: compact embeddings and local spaces
Gorka, Przemyslaw; Kostrzewa, Tomasz; Reyes, Enrique G. -
Between outer space and human space: knowing space as the origin of anthropology
Sauter, M. J. (Michael)