dc.creatorBagio, D
dc.creatorDias, I
dc.creatorPaques, A
dc.date2006
dc.date46447
dc.date2014-11-14T20:06:14Z
dc.date2015-11-26T17:16:49Z
dc.date2014-11-14T20:06:14Z
dc.date2015-11-26T17:16:49Z
dc.date.accessioned2018-03-29T00:04:59Z
dc.date.available2018-03-29T00:04:59Z
dc.identifierIndagationes Mathematicae-new Series. Elsevier Science Bv, v. 17, n. 1, n. 1, n. 11, 2006.
dc.identifier0019-3577
dc.identifierWOS:000237521900001
dc.identifier10.1016/S0019-3577(06)80002-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81825
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81825
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81825
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282364
dc.descriptionWe deal with the existence of self-dual normal basis for Galois extensions of a commutative ring. We consider commutative rings which are local, connected semi-local (under some suitable restrictions) or zero-dimensional. We show that for such kind of rings every Galois extension of odd degree has a self-dual normal basis.
dc.description17
dc.description1
dc.description1
dc.description11
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationIndagationes Mathematicae-new Series
dc.relationIndag. Math.-New Ser.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectRings
dc.subjectExtensions
dc.subjectAlgebras
dc.titleOn self-dual normal bases
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución