dc.creator | Bagio, D | |
dc.creator | Dias, I | |
dc.creator | Paques, A | |
dc.date | 2006 | |
dc.date | 46447 | |
dc.date | 2014-11-14T20:06:14Z | |
dc.date | 2015-11-26T17:16:49Z | |
dc.date | 2014-11-14T20:06:14Z | |
dc.date | 2015-11-26T17:16:49Z | |
dc.date.accessioned | 2018-03-29T00:04:59Z | |
dc.date.available | 2018-03-29T00:04:59Z | |
dc.identifier | Indagationes Mathematicae-new Series. Elsevier Science Bv, v. 17, n. 1, n. 1, n. 11, 2006. | |
dc.identifier | 0019-3577 | |
dc.identifier | WOS:000237521900001 | |
dc.identifier | 10.1016/S0019-3577(06)80002-9 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81825 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/81825 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/81825 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1282364 | |
dc.description | We deal with the existence of self-dual normal basis for Galois extensions of a commutative ring. We consider commutative rings which are local, connected semi-local (under some suitable restrictions) or zero-dimensional. We show that for such kind of rings every Galois extension of odd degree has a self-dual normal basis. | |
dc.description | 17 | |
dc.description | 1 | |
dc.description | 1 | |
dc.description | 11 | |
dc.language | en | |
dc.publisher | Elsevier Science Bv | |
dc.publisher | Amsterdam | |
dc.publisher | Holanda | |
dc.relation | Indagationes Mathematicae-new Series | |
dc.relation | Indag. Math.-New Ser. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Rings | |
dc.subject | Extensions | |
dc.subject | Algebras | |
dc.title | On self-dual normal bases | |
dc.type | Artículos de revistas | |