dc.creatorDias, MOS
dc.creatorEnsinas, AV
dc.creatorNebra, SA
dc.creatorMaciel, R
dc.creatorRossell, CEV
dc.creatorMaciel, MRW
dc.date2009
dc.dateSEP
dc.date2014-11-14T18:15:31Z
dc.date2015-11-26T17:16:17Z
dc.date2014-11-14T18:15:31Z
dc.date2015-11-26T17:16:17Z
dc.date.accessioned2018-03-29T00:04:28Z
dc.date.available2018-03-29T00:04:28Z
dc.identifierChemical Engineering Research & Design. Inst Chemical Engineers, v. 87, n. 9A, n. 1206, n. 1216, 2009.
dc.identifier0263-8762
dc.identifierWOS:000270532800011
dc.identifier10.1016/j.cherd.2009.06.020
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70395
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/70395
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/70395
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282244
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionEthanol may be produced using sugarcane bagasse as raw material through the Organosolv process with dilute acid hydrolysis, thus increasing ethanol production with the same cultivated sugarcane area. In this work simulations of bioethanol production from sugarcane juice and bagasse are carried out using software UniSim Design. A typical large scale production plant is considered: 1000 m(3)/day of ethanol is produced using sugarcane juice as raw material. A three-step hydrolysis process (pre-hydrolysis of hemicellulose, Organosolv delignification and cellulose hydrolysis) of surplus sugarcane bagasse is considered. Pinch analysis is used to determine the minimum hot utility obtained with thermal integration of the plant, in order to find out the maximum availability of bagasse that can be used in the hydrolysis process, taking into consideration the use of 50% of generated sugarcane trash as fuel for electricity and steam production. Two different cases were analyzed for the product purification step: conventional and double-effect distillation systems. It was found that the double-effect distillation system allows 90% of generated bagasse to be used as raw material in the hydrolysis plant, which accounts for an increase of 26% in bioethanol production, considering exclusively the fermentation of hexoses obtained from the cellulosic fraction. (C) 2009 The Institution of Chemical Engineers. Published by Elsevier B.V All rights reserved.
dc.description87
dc.description9A
dc.description1206
dc.description1216
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFINEP
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherInst Chemical Engineers
dc.publisherRugby
dc.publisherInglaterra
dc.relationChemical Engineering Research & Design
dc.relationChem. Eng. Res. Des.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectBioethanol
dc.subjectSugarcane
dc.subjectDistillation
dc.subjectAcid hydrolysis
dc.subjectSimulation
dc.subjectHeat-exchanger Networks
dc.subjectFuel Ethanol-production
dc.subjectAcid-hydrolysis
dc.subjectGeneration
dc.subjectTechnologies
dc.subjectOptimization
dc.subjectPretreatment
dc.subjectCoproducts
dc.subjectFuture
dc.subjectModel
dc.titleProduction of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución