dc.creator | Carvalho, C | |
dc.creator | Munuera, C | |
dc.creator | da Silva, E | |
dc.creator | Torres, F | |
dc.date | 2007 | |
dc.date | MAY | |
dc.date | 2014-11-14T15:29:37Z | |
dc.date | 2015-11-26T17:15:33Z | |
dc.date | 2014-11-14T15:29:37Z | |
dc.date | 2015-11-26T17:15:33Z | |
dc.date.accessioned | 2018-03-29T00:03:48Z | |
dc.date.available | 2018-03-29T00:03:48Z | |
dc.identifier | Ieee Transactions On Information Theory. Ieee-inst Electrical Electronics Engineers Inc, v. 53, n. 5, n. 1919, n. 1924, 2007. | |
dc.identifier | 0018-9448 | |
dc.identifier | WOS:000246034600028 | |
dc.identifier | 10.1109/TIT.2007.894663 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/63458 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/63458 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/63458 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1282075 | |
dc.description | Hoholdt, van Lint, and Pellikaan used order functions to construct codes by means of Linear Algebra and Semigroup Theory only. However, Geometric Goppa codes that can be represented by this method are mainly those based on just one point. In this correspondence, we introduce the concept of near order function with the aim of generalizing this approach in such a way that a wider family of Geometric Goppa codes can be studied on a more elementary setting. | |
dc.description | 53 | |
dc.description | 5 | |
dc.description | 1919 | |
dc.description | 1924 | |
dc.language | en | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.publisher | Piscataway | |
dc.publisher | EUA | |
dc.relation | Ieee Transactions On Information Theory | |
dc.relation | IEEE Trans. Inf. Theory | |
dc.rights | fechado | |
dc.rights | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dc.source | Web of Science | |
dc.subject | algebraic geometric Goppa (GG) codes | |
dc.subject | error-correcting codes | |
dc.subject | order function | |
dc.subject | Weierstrass semigroups | |
dc.subject | Goppa Codes | |
dc.subject | Minimum Distance | |
dc.subject | Weierstrass Semigroup | |
dc.subject | Hermitian Curve | |
dc.subject | 2-point Codes | |
dc.subject | Points | |
dc.subject | Pairs | |
dc.subject | Gaps | |
dc.title | Near orders and codes | |
dc.type | Artículos de revistas | |