dc.creator | Oliveira, RCLF | |
dc.creator | Peres, PLD | |
dc.date | 2006 | |
dc.date | JAN | |
dc.date | 2014-11-14T15:11:38Z | |
dc.date | 2015-11-26T17:15:32Z | |
dc.date | 2014-11-14T15:11:38Z | |
dc.date | 2015-11-26T17:15:32Z | |
dc.date.accessioned | 2018-03-29T00:03:46Z | |
dc.date.available | 2018-03-29T00:03:46Z | |
dc.identifier | Systems & Control Letters. Elsevier Science Bv, v. 55, n. 1, n. 52, n. 61, 2006. | |
dc.identifier | 0167-6911 | |
dc.identifier | WOS:000234148000008 | |
dc.identifier | 10.1016/j.sysconle.2005.05.003 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/52487 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/52487 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/52487 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1282069 | |
dc.description | The robust stability of uncertain linear systems in polytopic domains is investigated in this paper. The main contribution is to provide a systematic procedure for generating sufficient robust stability linear matrix inequality conditions based on homogeneous polynomially parameter-dependent Lyapunov matrix functions of arbitrary degree on the uncertain parameters. The conditions exploit the positivity of the uncertain parameters, being constructed in such a way that: as the degree of the polynomial increases, the number of linear matrix inequalities and free variables increases and the test becomes less conservative; if a feasible solution exists for a certain degree, the conditions will also be verified for larger degrees. For any given degree, the feasibility of a set of linear matrix inequalities defined at the vertices of the polytope assures the robust stability. Both continuous and discrete-time uncertain systems are addressed, as illustrated by numerical examples. (c) 2005 Elsevier B.V. All rights reserved. | |
dc.description | 55 | |
dc.description | 1 | |
dc.description | 52 | |
dc.description | 61 | |
dc.language | en | |
dc.publisher | Elsevier Science Bv | |
dc.publisher | Amsterdam | |
dc.publisher | Holanda | |
dc.relation | Systems & Control Letters | |
dc.relation | Syst. Control Lett. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | robust stability | |
dc.subject | homogeneous polynomially parameter-dependent Lyapunov function | |
dc.subject | linear matrix inequality | |
dc.subject | continuous and discrete-time uncertain systems | |
dc.subject | time-invariant uncertainty | |
dc.subject | Global Optimization | |
dc.subject | Linear-systems | |
dc.subject | Uncertainty | |
dc.subject | Sedumi | |
dc.subject | Matlab | |
dc.title | LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions | |
dc.type | Artículos de revistas | |