dc.creatorWeinketz, S
dc.creatorCabrera, GG
dc.date1997
dc.date44562
dc.date2014-12-16T11:35:52Z
dc.date2015-11-26T17:15:15Z
dc.date2014-12-16T11:35:52Z
dc.date2015-11-26T17:15:15Z
dc.date.accessioned2018-03-29T00:03:30Z
dc.date.available2018-03-29T00:03:30Z
dc.identifierJournal Of Chemical Physics. Amer Inst Physics, v. 106, n. 4, n. 1620, n. 1627, 1997.
dc.identifier0021-9606
dc.identifierWOS:A1997WE31200036
dc.identifier10.1063/1.473229
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/76814
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/76814
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/76814
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282001
dc.descriptionThe thermally activated desorption of dissociated diatomic species from a metallic surface is described as a lattice-gas problem on a square lattice with nearest- and next-nearest neighbor interactions between the adsorbates and investigated within dynamic Monte Carlo simulations. In the limit of fast diffusion with respect to desorption, it can be shown that the desorption rate depends directly on the local order induced by the interactions within the adsorbate layer. Therefore, by employing an appropriate quasi-equilibrium cluster approximation for the local order (beyond the quasi-chemical approximation), a differential equation can be derived that depends on self-consistently calculated structure forms, reproducing quantitatively the temperature-programmed desorption spectra simulated with the Monte Carlo procedure. In this way it can be shown that the time evolution obtained from the dynamic Monte Carlo algorithm is indeed 'correct,' and on the other hand, that it can be successfully substituted by a 'cheaper' cluster approximation. (C) 1997 American Institute of Physics.
dc.description106
dc.description4
dc.description1620
dc.description1627
dc.languageen
dc.publisherAmer Inst Physics
dc.publisherWoodbury
dc.relationJournal Of Chemical Physics
dc.relationJ. Chem. Phys.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectTemperature-programmed Desorption
dc.subjectLattice-gas-model
dc.subjectCoupled Chemical-reactions
dc.subjectInteracting Molecules
dc.subjectHeterogeneous Surfaces
dc.subjectHydrogen
dc.subjectKinetics
dc.subjectDiffusion
dc.subjectSpectra
dc.subjectPd(100)
dc.titleAdsorbate order-disorder effects on recombinative thermal desorption: Equivalence between dynamic Monte Carlo simulations and self-consistent cluster approximations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución