dc.creator | Rocha, A | |
dc.creator | Goldenstein, S | |
dc.date | 2010 | |
dc.date | MAR | |
dc.date | 2014-11-14T12:30:23Z | |
dc.date | 2015-11-26T17:15:04Z | |
dc.date | 2014-11-14T12:30:23Z | |
dc.date | 2015-11-26T17:15:04Z | |
dc.date.accessioned | 2018-03-29T00:03:18Z | |
dc.date.available | 2018-03-29T00:03:18Z | |
dc.identifier | Computer Vision And Image Understanding. Academic Press Inc Elsevier Science, v. 114, n. 3, n. 349, n. 362, 2010. | |
dc.identifier | 1077-3142 | |
dc.identifier | WOS:000275485000005 | |
dc.identifier | 10.1016/j.cviu.2009.10.002 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70498 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/70498 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/70498 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1281952 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | In this paper, we introduce the progressive randomization (PR): a new image meta-description approach suitable for different image inference applications such as broad class Image Categorization Forensics and, Steganalysis. The main difference among PR and the state-of-the-art algorithms is that it is based on progressive perturbations on pixel values of images. With such perturbations, PR captures the image class separability allowing us to successfully infer high-level information about images. Even when only a limited number of training examples are available, the method still achieves good separability, and its accuracy increases with the size of the training set. We validate the method using two different inference scenarios and four image databases. (C) 2009 Elsevier Inc. All rights reserved. | |
dc.description | 114 | |
dc.description | 3 | |
dc.description | 349 | |
dc.description | 362 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | FAPESP [05/58103-3, 07/52015-0, 08/08681-9] | |
dc.description | CNPq [309254/2007-8, 472402/2007-2, 551007/2007-9] | |
dc.language | en | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.publisher | San Diego | |
dc.publisher | EUA | |
dc.relation | Computer Vision And Image Understanding | |
dc.relation | Comput. Vis. Image Underst. | |
dc.rights | fechado | |
dc.rights | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dc.source | Web of Science | |
dc.subject | Image inference | |
dc.subject | Progressive randomization | |
dc.subject | Image categorization | |
dc.subject | Image forensics | |
dc.subject | Steganalysis | |
dc.subject | Scene Classification | |
dc.subject | Representation | |
dc.subject | Photographs | |
dc.subject | Shape | |
dc.title | Progressive randomization: Seeing the unseen | |
dc.type | Artículos de revistas | |