dc.creatorKochloukova, DH
dc.date2006
dc.date42005
dc.date2014-11-14T11:55:07Z
dc.date2015-11-26T17:14:49Z
dc.date2014-11-14T11:55:07Z
dc.date2015-11-26T17:14:49Z
dc.date.accessioned2018-03-29T00:03:06Z
dc.date.available2018-03-29T00:03:06Z
dc.identifierJournal Of Algebra. Academic Press Inc Elsevier Science, v. 295, n. 2, n. 415, n. 425, 2006.
dc.identifier0021-8693
dc.identifierWOS:000234518100005
dc.identifier10.1016/j.jalgebra.2005.10.035
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/70471
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/70471
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/70471
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281896
dc.descriptionLet G be a profinite group, p a prime number and A a profinite (Z) over cap [G]-module of finite projective p-dimension (pd)G, p (A). Let N be a closed normal subgroup of G such that N is of finite cohomological p-dimension cd(p)(N), H-k(N, F-p) is nonzero and finite for k = min{cd(p)(N),pd(G,p)(A)} and N acts trivially on A. Then the virtual projective p-dimension vpd(G/N,p)(A) of A as a (Z) over cap [G/N]-module is finite and vpd(G/N,p) (A) = pd(G, p) (A) - k. In the case when A = (Z) over cap this generalizes the main result from [Th. Weigel, P.A. Zalesskii, Profinite groups of finite cohomological dimension, C. R. Acad. Sci. Paris Ser. I 338 (2004) 353-358]. (c) 2005 Elsevier Inc. All rights reserved.
dc.description295
dc.description2
dc.description415
dc.description425
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.publisherSan Diego
dc.publisherEUA
dc.relationJournal Of Algebra
dc.relationJ. Algebra
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectCohomological Dimension
dc.titleProfinite modules of finite projective p-dimension
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución