dc.creator | Martin, LABS | |
dc.creator | Seco, L | |
dc.date | 2010 | |
dc.date | JUN | |
dc.date | 2014-11-14T12:00:38Z | |
dc.date | 2015-11-26T17:14:49Z | |
dc.date | 2014-11-14T12:00:38Z | |
dc.date | 2015-11-26T17:14:49Z | |
dc.date.accessioned | 2018-03-29T00:03:05Z | |
dc.date.available | 2018-03-29T00:03:05Z | |
dc.identifier | Ergodic Theory And Dynamical Systems. Cambridge Univ Press, v. 30, n. 893, n. 922, 2010. | |
dc.identifier | 0143-3857 | |
dc.identifier | 1469-4417 | |
dc.identifier | WOS:000278631800011 | |
dc.identifier | 10.1017/S0143385709000285 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/82267 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/82267 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/82267 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1281894 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | In this paper we study characteristic exponents of flows in relation with the dynamics of flows on flag bundles. The starting point is a flow on a principal bundle with semi-simple group G. Projection against the lwasawa decomposition G = K AN defines an additive cocycic over the flow with values in a = log A Its Lyapunov exponents (limits along trajectories) and Morse exponents (limits along chains) are studied. A symmetric property of these spectral sets is proved, namely invariance under the Weyl group We also prove that these sets are located in certain Weyl chambers. defined from the dynamics on the associated flag bundles. As a special case linear flows on vector bundles are considered. | |
dc.description | o TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015. | |
dc.description | 30 | |
dc.description | 3 | |
dc.description | 893 | |
dc.description | 922 | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | CNPq [305513/03-6] | |
dc.description | FAPESP [04/00392-7, 02/10246-2] | |
dc.language | en | |
dc.publisher | Cambridge Univ Press | |
dc.publisher | New York | |
dc.publisher | EUA | |
dc.relation | Ergodic Theory And Dynamical Systems | |
dc.relation | Ergod. Theory Dyn. Syst. | |
dc.rights | embargo | |
dc.rights | http://journals.cambridge.org/action/displaySpecialPage?pageId=4676 | |
dc.source | Web of Science | |
dc.subject | Topological-spaces | |
dc.subject | Vector-bundles | |
dc.subject | Linear Flows | |
dc.subject | Sets | |
dc.subject | Semiflows | |
dc.subject | Manifolds | |
dc.subject | Systems | |
dc.title | Morse and Lyapunov spectra and dynamics on flag bundles | |
dc.type | Artículos de revistas | |