dc.creatorMartin, LABS
dc.creatorSeco, L
dc.date2010
dc.dateJUN
dc.date2014-11-14T12:00:38Z
dc.date2015-11-26T17:14:49Z
dc.date2014-11-14T12:00:38Z
dc.date2015-11-26T17:14:49Z
dc.date.accessioned2018-03-29T00:03:05Z
dc.date.available2018-03-29T00:03:05Z
dc.identifierErgodic Theory And Dynamical Systems. Cambridge Univ Press, v. 30, n. 893, n. 922, 2010.
dc.identifier0143-3857
dc.identifier1469-4417
dc.identifierWOS:000278631800011
dc.identifier10.1017/S0143385709000285
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/82267
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/82267
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/82267
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281894
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionIn this paper we study characteristic exponents of flows in relation with the dynamics of flows on flag bundles. The starting point is a flow on a principal bundle with semi-simple group G. Projection against the lwasawa decomposition G = K AN defines an additive cocycic over the flow with values in a = log A Its Lyapunov exponents (limits along trajectories) and Morse exponents (limits along chains) are studied. A symmetric property of these spectral sets is proved, namely invariance under the Weyl group We also prove that these sets are located in certain Weyl chambers. defined from the dynamics on the associated flag bundles. As a special case linear flows on vector bundles are considered.
dc.descriptiono TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.
dc.description30
dc.description3
dc.description893
dc.description922
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionCNPq [305513/03-6]
dc.descriptionFAPESP [04/00392-7, 02/10246-2]
dc.languageen
dc.publisherCambridge Univ Press
dc.publisherNew York
dc.publisherEUA
dc.relationErgodic Theory And Dynamical Systems
dc.relationErgod. Theory Dyn. Syst.
dc.rightsembargo
dc.rightshttp://journals.cambridge.org/action/displaySpecialPage?pageId=4676
dc.sourceWeb of Science
dc.subjectTopological-spaces
dc.subjectVector-bundles
dc.subjectLinear Flows
dc.subjectSets
dc.subjectSemiflows
dc.subjectManifolds
dc.subjectSystems
dc.titleMorse and Lyapunov spectra and dynamics on flag bundles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución