dc.creatorRibeiro, AD
dc.creatorde Aguiar, MAM
dc.creatorBaranger, M
dc.date2004
dc.dateJUN
dc.date2014-11-17T08:03:24Z
dc.date2015-11-26T17:13:59Z
dc.date2014-11-17T08:03:24Z
dc.date2015-11-26T17:13:59Z
dc.date.accessioned2018-03-29T00:02:20Z
dc.date.available2018-03-29T00:02:20Z
dc.identifierPhysical Review E. Amer Physical Soc, v. 69, n. 6, 2004.
dc.identifier1539-3755
dc.identifierWOS:000222502800057
dc.identifier10.1103/PhysRevE.69.066204
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/79870
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/79870
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/79870
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281706
dc.descriptionThe semiclassical limit of the coherent state propagator <z'\e(-i (H) over capT/h)\z'> involves complex classical trajectories of the Hamiltonian (H) over tilde (u,v)=<v\(H) over cap \u> satisfying u(0)=z' and v(T)=z'*. In this work we study mostly the case z'=z'. The propagator is then the return probability amplitude of a wave packet. We show that a plot of the exact return probability brings out the quantal images of the classical periodic orbits. Then we compare the exact return probability with its semiclassical approximation for a soft chaotic system with two degrees of freedom. We find two situations where classical trajectories satisfying the correct boundary conditions must be excluded from the semiclassical formula. The first occurs when the contribution of the trajectory to the propagator becomes exponentially large as (h) over bar goes to zero. The second occurs when the contributing trajectories undergo bifurcations. Close to the bifurcation the semiclassical formula diverges. More interestingly, in the example studied, after the bifurcation, where more than one trajectory satisfying the boundary conditions exist, only one of them in fact contributes to the semiclassical formula, a phenomenon closely related to Stokes lines. When the contributions of these trajectories are filtered out, the semiclassical results show excellent agreement with the exact calculations.
dc.description69
dc.description6
dc.description2
dc.languageen
dc.publisherAmer Physical Soc
dc.publisherCollege Pk
dc.publisherEUA
dc.relationPhysical Review E
dc.relationPhys. Rev. E
dc.rightsaberto
dc.rightshttp://publish.aps.org/authors/transfer-of-copyright-agreement
dc.sourceWeb of Science
dc.subjectCoherent-state Propagator
dc.subjectPeriodic Trajectories
dc.subjectHamiltonian-systems
dc.subjectPhase-space
dc.subjectPath-integrals
dc.subjectUniform
dc.subjectOrbits
dc.titleSemiclassical approximations based on complex trajectories
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución