dc.creatorOtero, R
dc.creatorHummelink, F
dc.creatorSato, F
dc.creatorLegoas, SB
dc.creatorThostrup, P
dc.creatorLaegsgaard, E
dc.creatorStensgaard, I
dc.creatorGalvao, DS
dc.creatorBesenbacher, F
dc.date2004
dc.dateNOV
dc.date2014-11-14T06:19:56Z
dc.date2015-11-26T17:13:35Z
dc.date2014-11-14T06:19:56Z
dc.date2015-11-26T17:13:35Z
dc.date.accessioned2018-03-29T00:01:57Z
dc.date.available2018-03-29T00:01:57Z
dc.identifierNature Materials. Nature Publishing Group, v. 3, n. 11, n. 779, n. 782, 2004.
dc.identifier1476-1122
dc.identifierWOS:000224786800017
dc.identifier10.1038/nmat1243
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81295
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/81295
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81295
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281607
dc.descriptionA nanoscale understanding of the complex dynamics of large molecules at surfaces is essential for the bottom-up design of molecular nanostructures(1-8). Here we show that we can change the diffusion coefficient of the complex organic molecule known as Violet Lander (VL, C108H104) on Cu(110) by two orders of magnitude by using the STM at low temperatures to switch between two adsorption configurations that differ only in the molecular orientation with respect to the substrate lattice. From an interplay with molecular dynamics simulations, we interpret the results within a lock-and-key model similar to the one driving the recognition between biomolecules: the molecule (key) is immobilized only when its orientation is such that the molecular shape fits the atomic lattice of the surface (lock); otherwise the molecule is highly mobile.
dc.description3
dc.description11
dc.description779
dc.description782
dc.languageen
dc.publisherNature Publishing Group
dc.publisherLondon
dc.publisherInglaterra
dc.relationNature Materials
dc.relationNat. Mater.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectMetal-surfaces
dc.subjectMicroscopy
dc.subjectDeposition
dc.subjectHydrogen
dc.titleLock-and-key effect in the surface diffusion of large organic molecules probed by STM
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución