dc.creatorTagliacozzo, L
dc.creatorde Oliveira, TR
dc.creatorIblisdir, S
dc.creatorLatorre, JI
dc.date2008
dc.dateJUL
dc.date2014-11-20T03:08:05Z
dc.date2015-11-26T17:12:54Z
dc.date2014-11-20T03:08:05Z
dc.date2015-11-26T17:12:54Z
dc.date.accessioned2018-03-29T00:01:18Z
dc.date.available2018-03-29T00:01:18Z
dc.identifierPhysical Review B. Amer Physical Soc, v. 78, n. 2, 2008.
dc.identifier1098-0121
dc.identifierWOS:000258190200069
dc.identifier10.1103/PhysRevB.78.024410
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/71677
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/71677
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/71677
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281446
dc.descriptionThe power of matrix product states to describe infinite-size translational-invariant critical spin chains is investigated. At criticality, the accuracy with which they describe ground-state properties of a system is limited by the size chi of the matrices that form the approximation. This limitation is quantified in terms of the scaling of the half-chain entanglement entropy. In the case of the quantum Ising model, we find S similar to 1/6log chi with high precision. This result can be understood as the emergence of an effective finite correlation length xi(chi) ruling all the scaling properties in the system. We produce six extra pieces of evidence for this finite-chi scaling, namely, the scaling of the correlation length, the scaling of magnetization, the shift of the critical point, the scaling of the entanglement entropy for a finite block of spins, the existence of scaling functions, and the agreement with analogous classical results. All our computations are consistent with a scaling relation of the form xi(chi)similar to chi(kappa), with kappa=2 for the Ising model. In the case of the Heisenberg model, we find similar results with the value kappa similar to 1.37. We also show how finite-chi scaling allows us to extract critical exponents. These results are obtained using the infinite time evolved block decimation algorithm which works in the thermodynamical limit and are verified to agree with density-matrix renormalization-group results and their classical analog obtained with the corner transfer-matrix renormalization group.
dc.description78
dc.description2
dc.languageen
dc.publisherAmer Physical Soc
dc.publisherCollege Pk
dc.publisherEUA
dc.relationPhysical Review B
dc.relationPhys. Rev. B
dc.rightsaberto
dc.rightshttp://publish.aps.org/authors/transfer-of-copyright-agreement
dc.sourceWeb of Science
dc.subjectQuantum Renormalization-groups
dc.subjectSpin Chains
dc.subjectTransverse Field
dc.subjectIsing-model
dc.subjectSystems
dc.subjectEntropy
dc.titleScaling of entanglement support for matrix product states
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución