dc.creatorKochloukova, DH
dc.date2002
dc.date2014-11-14T02:32:55Z
dc.date2015-11-26T17:12:45Z
dc.date2014-11-14T02:32:55Z
dc.date2015-11-26T17:12:45Z
dc.date.accessioned2018-03-29T00:01:10Z
dc.date.available2018-03-29T00:01:10Z
dc.identifierIsrael Journal Of Mathematics. Magnes Press, v. 129, n. 221, n. 239, 2002.
dc.identifier0021-2172
dc.identifierWOS:000176320700016
dc.identifier10.1007/BF02773165
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68682
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68682
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68682
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1281411
dc.descriptionWe characterise the modules B of homological type FP,, over a finitely generated Lie algebra L such that L is a split extension of an abelian ideal A and an abelian subalgebra Q and A acts trivially on B. The characterisation is in terms of the invariant A introduced by R. Bryant and J. Groves and is a Lie algebra version of the generalisation (K 4, Conjecture 1] of the still open FPm-Conjecture for metabelian groups [Bi-G, Conjecture p. 367]. The case m = 1 of our main result is treated separately, as there the characterisation is proved without restrictions on the type of the extension.
dc.description129
dc.description221
dc.description239
dc.languageen
dc.publisherMagnes Press
dc.publisherJerusalem
dc.publisherIsrael
dc.relationIsrael Journal Of Mathematics
dc.relationIsr. J. Math.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectValuations
dc.subjectFpm
dc.titleOn the homological finiteness properties of some modules over metabelian Lie algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución