dc.creator | Kochloukova, DH | |
dc.date | 2002 | |
dc.date | 2014-11-14T02:32:55Z | |
dc.date | 2015-11-26T17:12:45Z | |
dc.date | 2014-11-14T02:32:55Z | |
dc.date | 2015-11-26T17:12:45Z | |
dc.date.accessioned | 2018-03-29T00:01:10Z | |
dc.date.available | 2018-03-29T00:01:10Z | |
dc.identifier | Israel Journal Of Mathematics. Magnes Press, v. 129, n. 221, n. 239, 2002. | |
dc.identifier | 0021-2172 | |
dc.identifier | WOS:000176320700016 | |
dc.identifier | 10.1007/BF02773165 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68682 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/68682 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/68682 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1281411 | |
dc.description | We characterise the modules B of homological type FP,, over a finitely generated Lie algebra L such that L is a split extension of an abelian ideal A and an abelian subalgebra Q and A acts trivially on B. The characterisation is in terms of the invariant A introduced by R. Bryant and J. Groves and is a Lie algebra version of the generalisation (K 4, Conjecture 1] of the still open FPm-Conjecture for metabelian groups [Bi-G, Conjecture p. 367]. The case m = 1 of our main result is treated separately, as there the characterisation is proved without restrictions on the type of the extension. | |
dc.description | 129 | |
dc.description | 221 | |
dc.description | 239 | |
dc.language | en | |
dc.publisher | Magnes Press | |
dc.publisher | Jerusalem | |
dc.publisher | Israel | |
dc.relation | Israel Journal Of Mathematics | |
dc.relation | Isr. J. Math. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | Valuations | |
dc.subject | Fpm | |
dc.title | On the homological finiteness properties of some modules over metabelian Lie algebras | |
dc.type | Artículos de revistas | |