dc.creatorAzevedo, SS
dc.creatorFidelis, M
dc.creatorKoshlukov, P
dc.date2005
dc.date2014-11-19T23:43:08Z
dc.date2015-11-26T17:09:35Z
dc.date2014-11-19T23:43:08Z
dc.date2015-11-26T17:09:35Z
dc.date.accessioned2018-03-28T23:58:14Z
dc.date.available2018-03-28T23:58:14Z
dc.identifierCommunications In Algebra. Taylor & Francis Inc, v. 33, n. 4, n. 1011, n. 1022, 2005.
dc.identifier0092-7872
dc.identifierWOS:000229104900004
dc.identifier10.1081/AGB-200053801
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68147
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/68147
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/68147
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1280661
dc.descriptionThe algebras M-a,M-b(E) ⊗ E and Ma+b(E) are PI equivalent over a field of characteristic 0 where E is the infinite-dimensional Grassmann algebra. This result is a part of the well-known tensor product theorem. It was first proved by Kemer in 1984-1987 (see Kemer, 1991); other proofs of it were given by Regev (1990), and in several particular cases, by Di Vincenzo (1992), and by the authors (2004). Using graded polynomial identities, we obtain a new elementary proof of this fact and show that it fails for the T-ideals of the algebras M-1,M-1 (E) ⊗ E and M-2 (E) when the base field is infinite and of characteristic p > 2. The algebra M-a,M-a(E) ⊗ E satisfies certain graded identities that are not satisfied by M-2a (E). In another paper we proved that the algebras M-1,M-1 (E) and E ⊗ E are not PI equivalent in positive characteristic, while they do satisfy the same multilinear identities.
dc.description33
dc.description4
dc.description1011
dc.description1022
dc.languageen
dc.publisherTaylor & Francis Inc
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationCommunications In Algebra
dc.relationCommun. Algebr.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectgraded identities
dc.subjectpolynomial identities
dc.subjectT-prime T-ideal
dc.subjectFull Matrix Algebra
dc.subjectPolynomial-identities
dc.subjectGrassmann Algebra
dc.subjectTensor-products
dc.subjectOrder-n
dc.subjectFields
dc.titleGraded identities and PI equivalence of algebras in positive characteristic
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución