Artículos de revistas
Graded identities for tensor products of matrix (super)algebras over the Grassmann algebra
Registro en:
Linear Algebra And Its Applications. Elsevier Science Inc, v. 432, n. 41700, n. 780, n. 795, 2010.
0024-3795
WOS:000272929800025
10.1016/j.laa.2009.09.021
Autor
Di Vincenzo, OM
Koshlukov, P
Santulo, EA
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) In this paper we study the graded identities satisfied by the superalgebras M(a,b) over the Grassmann algebra and by their tensor products. These algebras play a crucial role in the theory developed by A. Kemer that led to the solution of the long standing Specht problem. It is well known that over a field of characteristic 0, the algebras M(pr)+q(s,ps)+q(r) and M(p.q) circle times M(r,s) satisfy the same ordinary polynomial identities. By means of describing the corresponding graded identities we prove that the T-ideal of the former algebra is contained in the T-ideal of the latter. Furthermore the inclusion is proper at least in case (r, s) = (1, 1). Finally we deal with the graded identities satisfied by algebras of type M(2n-1),2(n-1) and relate these graded identities to the ones of tensor powers of the Grassmann algebra. Our proofs are combinatorial and rely on the relationship between graded and ordinary identities as well as on appropriate models for the corresponding relatively free graded algebras. (C) 2009 Elsevier Inc. All rights reserved. 432 41700 780 795 MIUR Universita della Basilicata Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq [302651/2008-0] FAPESP [2005/60337-2, 03107793-4]
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza