dc.creator | Alves, LA | |
dc.creator | San Martin, LAB | |
dc.date | 2013 | |
dc.date | APR | |
dc.date | 2014-08-01T18:40:13Z | |
dc.date | 2015-11-26T17:07:47Z | |
dc.date | 2014-08-01T18:40:13Z | |
dc.date | 2015-11-26T17:07:47Z | |
dc.date.accessioned | 2018-03-28T23:56:19Z | |
dc.date.available | 2018-03-28T23:56:19Z | |
dc.identifier | Discrete And Continuous Dynamical Systems. Amer Inst Mathematical Sciences, v. 33, n. 4, n. 1247, n. 1273, 2013. | |
dc.identifier | 1078-0947 | |
dc.identifier | WOS:000311491000002 | |
dc.identifier | 10.3934/dcds.2013.33.1247 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/82010 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/82010 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1280199 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Let Q -> X be a principal bundle having as structural group G a reductive Lie group in the Harish-Chandra class that includes the case when G is semi-simple with finite center. A semiflow phi(k) of endomorphisms of Q induces a semiflow psi(k) on the associated bundle E = Q x(G) F, where F is the maximal flag bundle of G. The A-component of the Iwasawa decomposition G = KAN yields an additive vector valued cocycle a (k, xi), xi is an element of E, over psi(k) with values in the Lie algebra a of A. We prove the Multiplicative Ergodic Theorem of Oseledets for this cocycle: If nu is a probability measure invariant by the semiflow on X then the a-Lyapunov exponent lambda (xi) = lim 1/ka (k, xi) exists for every xi on the fibers above a set of full nu-measure. The level sets of lambda (.) on the fibers are described in algebraic terms. When phi(k) is a flow the description of the level sets is sharpened. We relate the cocycle a (k, xi) with the Lyapunov exponents of a linear flow on a vector bundle and other growth rates. | |
dc.description | 33 | |
dc.description | 4 | |
dc.description | 1247 | |
dc.description | 1273 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description | FAPESP [06/60031-3, 07/06896-5] | |
dc.description | CNPq [305513/2003-6] | |
dc.language | en | |
dc.publisher | Amer Inst Mathematical Sciences | |
dc.publisher | Springfield | |
dc.publisher | EUA | |
dc.relation | Discrete And Continuous Dynamical Systems | |
dc.relation | Discret. Contin. Dyn. Syst. | |
dc.rights | aberto | |
dc.source | Web of Science | |
dc.subject | Lyapunov exponents | |
dc.subject | multiplicative ergodic theorem | |
dc.subject | semi-simple Lie groups | |
dc.subject | reductive Lie groups | |
dc.subject | flag manifolds | |
dc.title | MULTIPLICATIVE ERGODIC THEOREM ON FLAG BUNDLES OF SEMI-SIMPLE LIE GROUPS | |
dc.type | Artículos de revistas | |