dc.creatorLuna, I
dc.creatorBallini, R
dc.date2011
dc.dateJUL-SEP
dc.date2014-08-01T18:21:32Z
dc.date2015-11-26T17:07:10Z
dc.date2014-08-01T18:21:32Z
dc.date2015-11-26T17:07:10Z
dc.date.accessioned2018-03-28T23:55:42Z
dc.date.available2018-03-28T23:55:42Z
dc.identifierInternational Journal Of Forecasting. Elsevier Science Bv, v. 27, n. 3, n. 708, n. 724, 2011.
dc.identifier0169-2070
dc.identifierWOS:000292222900006
dc.identifier10.1016/j.ijforecast.2010.09.006
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/77712
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/77712
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1280056
dc.descriptionThis paper presents a data-driven approach applied to the long term prediction of daily time series in the Neural Forecasting Competition. The proposal comprises the use of adaptive fuzzy rule-based systems in a top-down modeling framework. Therefore, daily samples are aggregated to build weekly time series, and consequently, model optimization is performed in a top-down framework, thus reducing the forecast horizon from 56 to 8 steps ahead. Two different disaggregation procedures are evaluated: the historical and daily top-down approaches. Data pre-processing and input selection are carried out prior to the model adjustment. The prediction results are validated using multiple time series, as well as rolling origin evaluations with model re-calibration, and the results are compared with those obtained using daily models, allowing us to analyze the effectiveness of the top-down approach for longer forecast horizons. (C) 2010 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
dc.description27
dc.description3
dc.description708
dc.description724
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationInternational Journal Of Forecasting
dc.relationInt. J. Forecast.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectSimulation
dc.subjectRule-based forecasting
dc.subjectForecasting competitions
dc.subjectDisaggregation
dc.subjectFuzzy inference system
dc.subjectAdaptive fuzzy systems
dc.subjectPart 1
dc.subjectIdentification
dc.subjectModels
dc.subjectFramework
dc.titleTop-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución