dc.creatorLopes, O
dc.creatorMontenegro, M
dc.date2006
dc.dateOCT
dc.date2014-11-19T14:44:20Z
dc.date2015-11-26T17:06:46Z
dc.date2014-11-19T14:44:20Z
dc.date2015-11-26T17:06:46Z
dc.date.accessioned2018-03-28T23:55:14Z
dc.date.available2018-03-28T23:55:14Z
dc.identifierJournal Of Dynamics And Differential Equations. Springer, v. 18, n. 4, n. 991, n. 999, 2006.
dc.identifier1040-7294
dc.identifierWOS:000241683500009
dc.identifier10.1007/s10884-006-9043-0
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/73980
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/73980
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/73980
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1279944
dc.descriptionWe prove radial symmetry (or axial symmetry) of the mountain pass solution of variational elliptic systems -A Delta u(x) + del F(u(x)) = 0 (or -del.(A(r)del u(x)) + del F(r, u(x)) =0,) u(x) = (u(1)(x),...,u(N)(x)), where A (or A(r)) is a symmetric positive definite matrix. The solutions are defined in a domain Omega which can be R-N, a ball, an annulus or the exterior of a ball. The boundary conditions are either Dirichlet or Neumann (or any one which is invariant under rotation). The mountain pass solutions studied here are given by constrained minimization on the Nehari manifold. We prove symmetry using the reflection method introduced in Lopes.
dc.description18
dc.description4
dc.description991
dc.description999
dc.languageen
dc.publisherSpringer
dc.publisherNew York
dc.publisherEUA
dc.relationJournal Of Dynamics And Differential Equations
dc.relationJ. Dyn. Differ. Equ.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectvector field equations
dc.subjectmountain pass
dc.subjectradial symmetry
dc.subjectaxial symmetry
dc.subjectElliptic-equations
dc.subjectVariational-problems
dc.subjectExistence
dc.subjectSystems
dc.titleSymmetry of mountain pass solutions of some vector field equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución