| dc.creator | GARCIA, NL | |
| dc.date | 1995 | |
| dc.date | DEC | |
| dc.date | 2014-12-16T11:34:52Z | |
| dc.date | 2015-11-26T17:06:00Z | |
| dc.date | 2014-12-16T11:34:52Z | |
| dc.date | 2015-11-26T17:06:00Z | |
| dc.date.accessioned | 2018-03-28T23:54:25Z | |
| dc.date.available | 2018-03-28T23:54:25Z | |
| dc.identifier | Advances In Applied Probability. Applied Probability Trust, v. 27, n. 4, n. 911, n. 930, 1995. | |
| dc.identifier | 0001-8678 | |
| dc.identifier | WOS:A1995TJ37600002 | |
| dc.identifier | 10.2307/1427928 | |
| dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/55725 | |
| dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/55725 | |
| dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/55725 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1279739 | |
| dc.description | Birth and death processes can be constructed as projections of higher-dimensional Poisson processes. The existence and uniqueness in the strong sense of the solutions of the time change problem are obtained. It is shown that the solution of the time change problem is equivalent to the solution of the corresponding martingale problem. Moreover, the processes obtained by the projection method are ergodic under translations. | |
| dc.description | 27 | |
| dc.description | 4 | |
| dc.description | 911 | |
| dc.description | 930 | |
| dc.language | en | |
| dc.publisher | Applied Probability Trust | |
| dc.publisher | Sheffield | |
| dc.publisher | Inglaterra | |
| dc.relation | Advances In Applied Probability | |
| dc.relation | Adv. Appl. Probab. | |
| dc.rights | fechado | |
| dc.source | Web of Science | |
| dc.subject | POISSON POINT PROCESS | |
| dc.subject | SPATIAL BIRTH AND DEATH PROCESSES | |
| dc.subject | RANDOM TIME CHANGE | |
| dc.subject | MARTINGALE PROBLEM | |
| dc.subject | SPATIAL ERGODICITY | |
| dc.title | BIRTH AND DEATH PROCESSES AS PROJECTIONS OF HIGHER-DIMENSIONAL POISSON PROCESSES | |
| dc.type | Artículos de revistas | |